Advanced Search+
Chenyu WANG (王晨宇), Lin NIE (聂林), Guixin TANG (唐圭新), Min XU (许敏), Rui KE (柯锐), Yihang CHEN (陈逸航), Huajie WANG (王华杰), Zhanhui WANG (王占辉), Shilin HU (胡世林), Ting WU (吴婷), Ting LONG (龙婷), Yuxuan ZHU (朱宇轩), Hao LIU (刘灏), Shaobo GONG (龚少博), Jinbang YUAN (袁金榜), Longwen YAN (严龙文). Comparison between fluctuation of floating potential gradient and velocity of blob structure on HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55103-055103. DOI: 10.1088/2058-6272/abed2c
Citation: Chenyu WANG (王晨宇), Lin NIE (聂林), Guixin TANG (唐圭新), Min XU (许敏), Rui KE (柯锐), Yihang CHEN (陈逸航), Huajie WANG (王华杰), Zhanhui WANG (王占辉), Shilin HU (胡世林), Ting WU (吴婷), Ting LONG (龙婷), Yuxuan ZHU (朱宇轩), Hao LIU (刘灏), Shaobo GONG (龚少博), Jinbang YUAN (袁金榜), Longwen YAN (严龙文). Comparison between fluctuation of floating potential gradient and velocity of blob structure on HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55103-055103. DOI: 10.1088/2058-6272/abed2c

Comparison between fluctuation of floating potential gradient and velocity of blob structure on HL-2A tokamak

Funds: This research is supported by the National Key Research and Development Program of China (Nos. 2017YFE0300500, 2017YFE0300501) and No. 2018YFE0309100 and National Natural Science Foundation of China (Nos. 11705052, 11875124, 11905050, 11875020 and U1867222).
More Information
  • Received Date: October 19, 2020
  • Revised Date: March 08, 2021
  • Accepted Date: March 08, 2021
  • Several results based on the Langmuir probes' data on the HL-2A tokamak are presented. The blob structures' radial and poloidal drift velocities, estimated by the gradient of floating potential and by time delay evaluation, are compared in different line-averaged density and electron cyclotron resonance heating conditions. A positive correlation is observed in the comparison between blobs' radial velocity estimated by the two methods mentioned above, regardless of the situation differences mentioned above. Correlation is also observed in the comparison between the blobs' poloidal velocity estimated by the two methods in different situations, while a shift due to the different line-averaged density is observed. These results imply that the radial gradient of floating potential may have some value as a reference during data analysis in low-parameter discharge.
  • [1]
    Popov T K et al 2009 Plasma Phys. Control. Fusion 51 065014
    [2]
    Nie L et al 2018 Nucl. Fusion 58 036021
    [3]
    Cheng J et al 2010 Plasma Phys. Control. Fusion 52 055003
    [4]
    Xu Y H et al 2005 Plasma Phys. Control. Fusion 47 1841
    [5]
    Kirnev G S et al 2005 Nucl. Fusion 45 459
    [6]
    Martines E et al 2009 Plasma Phys. Control. Fusion 51 124053
    [7]
    Cheng J et al 2013 Nucl. Fusion 53 093008
    [8]
    Guo D et al 2018 Nucl. Fusion 58 026015
    [9]
    D’Ippolito D A, Myra J R and Zweben S J 2011 Phys. Plasmas 18 060501
    [10]
    Goodall D H J 1982 J. Nucl. Mater. 111 11
    [11]
    Krasheninnikov S I 2001 Phys. Lett. A 283 368
    [12]
    D’Ippolito D A 2002 Phys. Plasmas 9 222
    [13]
    Xu X Q et al 2002 New J. Phys. 4 53
    [14]
    Russell D A et al 2004 Phys. Rev. Lett. 93 265001
    [15]
    D’Ippolito D A, Myra J R and Russell D A 2004 Phys.Plasmas 11 4603
    [16]
    D’Ippolito D A et al 2004 Phys. Plasmas 44 205
    [17]
    Hong W Y et al 2005 Nucl. Fusion Plasma Phys. 25 241 (in Chinese)
    [18]
    Yan L W et al 2005 Rev. Sci. Instrum. 76 093506
    [19]
    Yang Q W et al 2007 Nucl. Fusion 47 S635
    [20]
    Boedo J A et al 2001 Phys. Plasmas 8 4826
    [21]
    Pécseli H L and Trulsen J 1989 Phys. Fluids B: Plasma Phys.1 1616
    [22]
    Filippas A V 1995 Phys. Plasmas 2 839
    [23]
    Antar G Y et al 2003 Phys. Plasmas 10 419
    [24]
    Banerjee S et al 2012 Nucl. Fusion 52 123016
  • Related Articles

    [1]Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a
    [2]Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e
    [3]A. PONOMARENKO, A. YASHIN, V. GUSEV, E. KISELEV, G. KURSKIEV, V. MINAEV, Y. PETROV, N. SAKHAROV, P. SHCHEGOLEV, E. TKACHENKO, N. ZHILTSOV. First results of turbulence investigation on Globus-M2 using radial correlation Doppler reflectometry[J]. Plasma Science and Technology, 2024, 26(10): 105101. DOI: 10.1088/2058-6272/ad5fe5
    [4]Weice WANG, Jun CHENG, Zhongbing SHI, Longwen YAN, Zhihui HUANG, Kaiyang YI, Na WU, Yu HE, Qian ZOU, Xi CHEN, Wen ZHANG, Jian CHEN, Lin NIE, Xiaoquan JI, Wulyu ZHONG. An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma[J]. Plasma Science and Technology, 2024, 26(3): 034018. DOI: 10.1088/2058-6272/ad1c76
    [5]Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56
    [6]Min JIANG (蒋敏), Yuhong XU (许宇鸿), Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Wei CHEN (陈伟), Rui KE (柯锐), Jiquan LI (李继全), Xuantong DING (丁玄同), Jun CHENG (程钧), Xiaoquan JI (季小全), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Jie WEN (闻杰), Kairui FANG (方凯锐), Na WU (吴娜), Xiaoxue HE (何小雪), Anshu LIANG (梁桉树), Yi LIU (刘仪), Qingwei YANG (杨青巍), Min XU (许敏), HL-A Team. Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas[J]. Plasma Science and Technology, 2020, 22(8): 80501-080501. DOI: 10.1088/2058-6272/ab8785
    [7]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [8]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [9]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [10]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
  • Cited by

    Periodical cited type(10)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484
    3. Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566
    4. Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131
    5. Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949
    6. Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271
    7. Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588
    8. Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848
    9. Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744
    10. Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915

    Other cited types(0)

Catalog

    Article views (223) PDF downloads (316) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return