Advanced Search+
Jintao QIU (邱锦涛), Cheng ZHANG (章程), Zehui LIU (刘泽慧), Bangdou HUANG (黄邦斗), Tao SHAO (邵涛). Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air[J]. Plasma Science and Technology, 2021, 23(6): 64011-064011. DOI: 10.1088/2058-6272/abf299
Citation: Jintao QIU (邱锦涛), Cheng ZHANG (章程), Zehui LIU (刘泽慧), Bangdou HUANG (黄邦斗), Tao SHAO (邵涛). Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air[J]. Plasma Science and Technology, 2021, 23(6): 64011-064011. DOI: 10.1088/2058-6272/abf299

Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air

Funds: This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51925703), National Natural Science Foundation of China (Grant Nos. 52022096 and 51907190) and the Royal Society–Newton Advanced Fellowship, UK (Grant No. NAF\R2\192117).
More Information
  • Received Date: January 19, 2021
  • Revised Date: March 25, 2021
  • Accepted Date: April 11, 2021
  • This paper presents an experimental investigation into the runaway electron spectrum with a gas diode composed of a rough spherical cathode and plane anode under the excitation of a nanosecond-pulse generator in atmospheric air. The runaway electron beams are measured by a collector covered with aluminum foil with a thickness from 0 μm (mesh grid) to 50 μm. The energy spectrum is calculated by an improved Tikhonov regularization called the maximum entropy method. The experimental results show that the transition state of the discharge consisted of multiple streamer channels stretched from the cathode with glow-like plasma uniformly distributed over the anode. The number of runaway electrons measured by the collector is in the order of 1010 in atmospheric pressure air with a gap spacing of 5 mm and applied voltages of 70–130 kV. The cathode with a rough surface creates a more inhomogeneous electric field and larger emission site for the runaway electrons around the cathode, providing conditions for the coexistence of filamentary streamer and diffuse discharge. The reconstructed spectra show that the energy distribution of the runaway electrons presents a single-peak profile with energies from eUm/2–2eUm/3 (Um is maximal voltage across the gap).
  • [1]
    Wilson C T R 1925 Math. Proc. Camb. Philos. Soc. 22 534
    [2]
    Kochkin P O, van Deursen A P J and Ebert U 2015 J. Phys. D:Appl. Phys. 48 025205
    [3]
    Carman R J et al 2010 J. Phys. D: Appl. Phys. 43 025205
    [4]
    Enoto T et al 2017 Nature 551 481
    [5]
    Mankowski J and Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 102
    [6]
    Babich L P and Loiko T V 2010 Plasma Phys. Rep. 36 263
    [7]
    Tarasenko V F, Baksht E K and Burachenko A G 2016 Russ.Phys. J. 58 1702
    [8]
    Kozyrev A V et al 2015 Laser Part. Beams 33 183
    [9]
    Babaeva N Y et al 2017 Plasma Sources Sci. Technol. 26 085008
    [10]
    Babaeva N Y et al 2018 J. Phys. D: Appl. Phys. 51 434002
    [11]
    Zhang C et al 2019 J. Phys. D: Appl. Phys. 52 275202
    [12]
    Zhang C et al 2016 Phys. Rev. Accel. Beams 19 030402
    [13]
    Murphy E L and Good R H Jr 1956 Phys. Rev. 102 1464
    [14]
    Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001
    [15]
    Lomaev M, Sorokin D and Tarasenko V F 2015 J. Phys.: Conf.Ser. 652 012033
    [16]
    Mesyats G A and Yalandin M I 2009 Dokl. Phys. 54 63
    [17]
    Eggermont P P B 1993 SIAM J. Math. Anal. 24 1557
    [18]
    Hansen P C 1994 Numer. Algorithms 6 1
    [19]
    Hansen P C 1990 BIT Numer. Math. 30 658
    [20]
    Hu Y L et al 2020 Plasma Sci. Technol. 22 015401
    [21]
    Levko D and Raja L L 2016 J. Appl. Phys. 119 153301
    [22]
    Ran J X et al 2020 Plasma Sci. Technol. 22 105401
    [23]
    Bethe H A and Ashkin J 1953 Passage of radiations through matter ed E Segre Experimental Nuclear Physics (New York: Wiley) 277
    [24]
    Tarasenko V et al 2019 Plasma Sci. Technol. 21 044007
    [25]
    Mesyats G A, Bychkov Y I and Kremnev V V 1972 Sov. Phys.Usp. 15 282
    [26]
    Shao T et al 2018 High Volt. 3 14
    [27]
    Sodha M S and Dixit A 2008 J. Appl. Phys. 104 084908
    [28]
    Shunailov S A et al 2017 IEEE Trans. Plasma Sci. 45 2755
    [29]
    Köhn C et al 2018 Plasma Sources Sci. Technol. 27 015017
    [30]
    Tarasenko V F et al 2017 High Volt. 2 49
    [31]
    Levko D et al 2012 J. Appl. Phys. 111 013304
    [32]
    Kozyrev A V, Kozhevnikov V Y and Semeniuk N S 2016 Matter Radiat. Extremes 1 264
    [33]
    Strehlow R and Kazimierski K S 2014 Inverse Probl. 30 075005
    [34]
    Andreo P 2018 Radiat. Oncol. 13 121
  • Related Articles

    [1]Lixue WANG, Jixing CAI. Study on the effect of focal position change on the expansion velocity and propagation mechanism of plasma generated by millisecond pulsed laser-induced fused silica[J]. Plasma Science and Technology, 2023, 25(3): 035507. DOI: 10.1088/2058-6272/ac9892
    [2]Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca
    [3]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [4]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [5]TANG Enling (唐恩凌), WU Jin (吴尽), WANG Meng (王猛), ZHANG Lijiao (张立佼), XIANG Shenghai (相升海), XIA Jin (夏瑾), LIU Shuhua (刘淑华), HE Liping (贺丽萍), HAN Yafei (韩雅菲), XU Mingyang (徐名扬), ZHANG Shuang (张爽), YUAN Jianfei (袁健飞). Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts[J]. Plasma Science and Technology, 2016, 18(4): 412-416. DOI: 10.1088/1009-0630/18/4/14
    [6]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [7]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [8]Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18
    [9]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
    [10]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
  • Cited by

    Periodical cited type(3)

    1. Zhang, B., Cai, J., Jin, L. et al. Research on the enhancement mechanism of subsonic gas flow field in cleaning the paint layer by combining laser-induced plasma shock. Journal of Physics D: Applied Physics, 2025, 58(17): 175206. DOI:10.1088/1361-6463/adc13d
    2. Liu, Y., Cai, J., Zhou, Y. et al. Tunable plasma and combustion wave dynamics in fused silica induced by combined millisecond-nanosecond laser pulses under airflow control. Physics of Fluids, 2025, 37(1): 011705. DOI:10.1063/5.0249948
    3. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2

    Other cited types(0)

Catalog

    Article views (308) PDF downloads (212) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return