Advanced Search+
Jintao QIU (邱锦涛), Cheng ZHANG (章程), Zehui LIU (刘泽慧), Bangdou HUANG (黄邦斗), Tao SHAO (邵涛). Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air[J]. Plasma Science and Technology, 2021, 23(6): 64011-064011. DOI: 10.1088/2058-6272/abf299
Citation: Jintao QIU (邱锦涛), Cheng ZHANG (章程), Zehui LIU (刘泽慧), Bangdou HUANG (黄邦斗), Tao SHAO (邵涛). Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air[J]. Plasma Science and Technology, 2021, 23(6): 64011-064011. DOI: 10.1088/2058-6272/abf299

Reconstruction of energy spectrum of runaway electrons in nanosecond-pulse discharges in atmospheric air

Funds: This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51925703), National Natural Science Foundation of China (Grant Nos. 52022096 and 51907190) and the Royal Society–Newton Advanced Fellowship, UK (Grant No. NAF\R2\192117).
More Information
  • Received Date: January 19, 2021
  • Revised Date: March 25, 2021
  • Accepted Date: April 11, 2021
  • This paper presents an experimental investigation into the runaway electron spectrum with a gas diode composed of a rough spherical cathode and plane anode under the excitation of a nanosecond-pulse generator in atmospheric air. The runaway electron beams are measured by a collector covered with aluminum foil with a thickness from 0 μm (mesh grid) to 50 μm. The energy spectrum is calculated by an improved Tikhonov regularization called the maximum entropy method. The experimental results show that the transition state of the discharge consisted of multiple streamer channels stretched from the cathode with glow-like plasma uniformly distributed over the anode. The number of runaway electrons measured by the collector is in the order of 1010 in atmospheric pressure air with a gap spacing of 5 mm and applied voltages of 70–130 kV. The cathode with a rough surface creates a more inhomogeneous electric field and larger emission site for the runaway electrons around the cathode, providing conditions for the coexistence of filamentary streamer and diffuse discharge. The reconstructed spectra show that the energy distribution of the runaway electrons presents a single-peak profile with energies from eUm/2–2eUm/3 (Um is maximal voltage across the gap).
  • [1]
    Wilson C T R 1925 Math. Proc. Camb. Philos. Soc. 22 534
    [2]
    Kochkin P O, van Deursen A P J and Ebert U 2015 J. Phys. D:Appl. Phys. 48 025205
    [3]
    Carman R J et al 2010 J. Phys. D: Appl. Phys. 43 025205
    [4]
    Enoto T et al 2017 Nature 551 481
    [5]
    Mankowski J and Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 102
    [6]
    Babich L P and Loiko T V 2010 Plasma Phys. Rep. 36 263
    [7]
    Tarasenko V F, Baksht E K and Burachenko A G 2016 Russ.Phys. J. 58 1702
    [8]
    Kozyrev A V et al 2015 Laser Part. Beams 33 183
    [9]
    Babaeva N Y et al 2017 Plasma Sources Sci. Technol. 26 085008
    [10]
    Babaeva N Y et al 2018 J. Phys. D: Appl. Phys. 51 434002
    [11]
    Zhang C et al 2019 J. Phys. D: Appl. Phys. 52 275202
    [12]
    Zhang C et al 2016 Phys. Rev. Accel. Beams 19 030402
    [13]
    Murphy E L and Good R H Jr 1956 Phys. Rev. 102 1464
    [14]
    Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001
    [15]
    Lomaev M, Sorokin D and Tarasenko V F 2015 J. Phys.: Conf.Ser. 652 012033
    [16]
    Mesyats G A and Yalandin M I 2009 Dokl. Phys. 54 63
    [17]
    Eggermont P P B 1993 SIAM J. Math. Anal. 24 1557
    [18]
    Hansen P C 1994 Numer. Algorithms 6 1
    [19]
    Hansen P C 1990 BIT Numer. Math. 30 658
    [20]
    Hu Y L et al 2020 Plasma Sci. Technol. 22 015401
    [21]
    Levko D and Raja L L 2016 J. Appl. Phys. 119 153301
    [22]
    Ran J X et al 2020 Plasma Sci. Technol. 22 105401
    [23]
    Bethe H A and Ashkin J 1953 Passage of radiations through matter ed E Segre Experimental Nuclear Physics (New York: Wiley) 277
    [24]
    Tarasenko V et al 2019 Plasma Sci. Technol. 21 044007
    [25]
    Mesyats G A, Bychkov Y I and Kremnev V V 1972 Sov. Phys.Usp. 15 282
    [26]
    Shao T et al 2018 High Volt. 3 14
    [27]
    Sodha M S and Dixit A 2008 J. Appl. Phys. 104 084908
    [28]
    Shunailov S A et al 2017 IEEE Trans. Plasma Sci. 45 2755
    [29]
    Köhn C et al 2018 Plasma Sources Sci. Technol. 27 015017
    [30]
    Tarasenko V F et al 2017 High Volt. 2 49
    [31]
    Levko D et al 2012 J. Appl. Phys. 111 013304
    [32]
    Kozyrev A V, Kozhevnikov V Y and Semeniuk N S 2016 Matter Radiat. Extremes 1 264
    [33]
    Strehlow R and Kazimierski K S 2014 Inverse Probl. 30 075005
    [34]
    Andreo P 2018 Radiat. Oncol. 13 121
  • Related Articles

    [1]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [2]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [3]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [4]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [5]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [6]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [7]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [8]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [9]GU Jianwei (顾建伟), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), YAN Ping (严萍), SHAO Tao (邵涛). Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap[J]. Plasma Science and Technology, 2016, 18(3): 230-235. DOI: 10.1088/1009-0630/18/3/03
    [10]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Pang, Z., Zheng, H. et al. Electrical Properties of CF3SO2F Insulating Gas Based on Density Functional Theory. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(1): 297-303. DOI:10.1109/TDEI.2023.3308083
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    4. Li, L., Wang, B., Yi, C. et al. Factors and Underlying Mechanisms That Influence the Repetitive Breakdown Characteristics of Corona-Stabilized Switches. Applied Sciences (Switzerland), 2023, 13(17): 9518. DOI:10.3390/app13179518
    5. Ma, Y., Gao, G., Xiang, Y. et al. Research on the energy consumption mechanism and characteristics of the gallium indium tin liquid metal arcing process. Plasma Science and Technology, 2023, 25(9): 095502. DOI:10.1088/2058-6272/acc234
    6. Zhao, S., Wang, W., Qi, Z. et al. Partial Discharge Measurement of GIS With Damped AC (DAC) Voltage: Case Study for the Particle on Insulator. IEEE Transactions on Power Delivery, 2023, 38(3): 1665-1673. DOI:10.1109/TPWRD.2022.3223477

    Other cited types(0)

Catalog

    Article views (308) PDF downloads (212) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return