Citation: | Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca |
[1] |
Wang Y et al 2017 Plasma Sci. Technol. 19 064016
|
[2] |
Liu Y K et al 2016 Electric Power Syst. Res. 139 81
|
[3] |
IEC 2009 Protection Against Lightning-Part 3: Physical Damage to Structures and Life Hazard (Geneva: IEC) pp 62305–3
|
[4] |
SAE 2013 Aircraft Lightning Test Methods (Warrendale, PA: SAE International) ARP-5416
|
[5] |
MIL 1980 Lightning Quali?cation Test Techniques for Aerospace Vehicles and Hardware (USA)
|
[6] |
Rupke E 2002 Lightning Direct Effect Handbook (Pitts?eld, MA: USA AGATE) AGATE-WP 3.1-031027-043-Design Guideline
|
[7] |
Cooray V 2010 Lightning Protection London the Institution of Engineering and Technology (London: IET)
|
[8] |
Metwally I A, Heidler F and Zischank W 2004 Eur. Trans. Electr. Power 14 201
|
[9] |
Polykrati A D et al 2004 IEE Proc. Gener. Transm. Distrib. 151 90
|
[10] |
Paisios M P, Karagiannopoulos C G and Bourkas P D 2007 Electr. Power Syst. Res. 78 80
|
[11] |
Kern A and Zischank W J 1988 Melting effects on metal sheets and air termination wires caused by direct lightning strikes Int. Conf. on Lightning Protection (Graz: IEEE)
|
[12] |
Chemartin L et al 2012 Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints J. Aerosp. Lab 5 1–15
|
[13] |
Bruce C E R and Golde R H 1941 J. Inst. Electr. Eng. II 88 487
|
[14] |
He Y W, Fu Z C and Jiang A F 2015 On the simulation of lightning current for the application in lightning arrester and material ablation tests 2015 Asia-Paci?c Symp. on Electromagnetic Compatibility (Taipei: IEEE)
|
[15] |
Liu Y K et al 2016 High Voltage Eng. 42 1578 (in Chinese)
|
[16] |
Gao X et al 2016 Analysis on the choosing of test electrode for lightning current metal ablation experiments Proc. 33rd Int. Conf. on Lightning Protection (Estoril: IEEE)
|
[17] |
Zischank W et al 1995 Reliable simulation of metal surface penetration by lightning continuing currents Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Williamsburg, NY: USDOE)
|
[18] |
Kern A 1991 Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes Proc. Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Cocoa Beach, FL: NASA)
|
[19] |
Uhlig F et al 1995 Experimental simulations of lightning impacts on aeronautical structural materials Proc. Int. Aerospace and Ground Conf. on Lightning and Static Electricity (Williamsburg, NY: NASA)
|
[20] |
Gouega A M et al 2000 Eur. Phys. J. 11 111–22
|
[21] |
Liu Y K et al 2015 Analysis and experiment on metal ablation protection of the large ?oating roof oil tanks struck by direct lightning Proc. 19th Int. Symp. on High Voltage Engineering (Pilsen: CIGRE)
|
[1] | Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1 |
[2] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[3] | JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12 |
[4] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08 |
[5] | ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03 |
[6] | JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良), et al.. Atmospheric Pressure Plasma Jet in Ar and O 2 /Ar Mixtures: Properties and High Performance for Surface Cleaning[J]. Plasma Science and Technology, 2013, 15(12): 1203-1208. DOI: 10.1088/1009-0630/15/12/08 |
[7] | LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08 |
[8] | LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17 |
[9] | FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16 |
[10] | FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582. |
1. | Zhao, Y., Liu, Y., Liu, Z. et al. A 3D-printed fence-surface plasma source for skin treatment and its potential for personalized medical application. Journal of Physics D: Applied Physics, 2024, 57(12): 125207. DOI:10.1088/1361-6463/ad172d |
2. | Xu, W., Lu, Y., Yue, X. et al. Influence of operating conditions on electron density in atmospheric pressure helium plasma jets. Journal of Physics D: Applied Physics, 2024, 57(4): 045201. DOI:10.1088/1361-6463/ad0479 |
3. | Apelqvist, J., Robson, A., Helmke, A. et al. AN EMERGING TECHNOLOGY FOR CLINICAL USE IN WOUND HEALING. Journal of Wound Management, 2024, 25(3): S1-S84. DOI:10.35279/jowm2024.25.03.sup01 |
4. | Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801 |
5. | Machmud, A., Chang, M.B. Review on applying plasma and catalysis for abating the emissions of fluorinated compounds. Journal of Environmental Chemical Engineering, 2023, 11(6): 111584. DOI:10.1016/j.jece.2023.111584 |
6. | Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475-1488. DOI:10.1007/s11090-023-10404-0 |
7. | Liu, Z., Gao, Y., Pang, B. et al. Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma. Journal of Physics D: Applied Physics, 2022, 55(29): 295202. DOI:10.1088/1361-6463/ac6a8a |
8. | Liu, F., Nie, L., Lu, X. On the green aurora emission of Ar atmospheric pressure plasma. Plasma Science and Technology, 2022, 24(5): 055408. DOI:10.1088/2058-6272/ac52ec |
9. | Ouyang, W., Ding, C., Liu, Q. et al. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105215 |
10. | Pang, B., Liu, Z., Wang, S. et al. Discharge mode transition in a He/Ar atmospheric pressure plasma jet and its inactivation effect against tumor cells in vitro. Journal of Applied Physics, 2021, 130(15): 153301. DOI:10.1063/5.0063135 |
11. | Sharma, N.K., Misra, S., Varun, Choyal, Y. et al. Analysis of Discharge Characteristics of Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49(9): 2799-2805. DOI:10.1109/TPS.2021.3106792 |
12. | Sharma, N.K., Misra, S., Varun, Pal, U.N. Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Physics of Plasmas, 2020, 27(11): 113502. DOI:10.1063/5.0018901 |
13. | Nguyen, D.B., Trinh, Q.H., Hossain, M.M. et al. Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45(36): 18519-18532. DOI:10.1016/j.ijhydene.2019.06.167 |
14. | Nguyen, D.B., Trinh, Q.H., Mok, Y.S. et al. Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29(3): 035014. DOI:10.1088/1361-6595/ab6ebd |