Advanced Search+
Alfio TORRISI, Przemysław WACHULAK, Lorenzo TORRISI. UV and soft X-ray emission from gaseous and solid targets employing SiC detectors[J]. Plasma Science and Technology, 2021, 23(5): 55508-055508. DOI: 10.1088/2058-6272/abf423
Citation: Alfio TORRISI, Przemysław WACHULAK, Lorenzo TORRISI. UV and soft X-ray emission from gaseous and solid targets employing SiC detectors[J]. Plasma Science and Technology, 2021, 23(5): 55508-055508. DOI: 10.1088/2058-6272/abf423

UV and soft X-ray emission from gaseous and solid targets employing SiC detectors

More Information
  • Received Date: November 30, 2020
  • Revised Date: March 29, 2021
  • Accepted Date: March 30, 2021
  • A ns Nd:YAG pulsed laser has been employed to produce plasma from the interaction with a dense target, generating continuum and UV and soft x-ray emission depending on the laser parameters and target properties. The laser hits solid and gaseous targets producing plasma in high vacuum, which was investigated by employing a silicon carbide detector. The two different interaction mechanisms were studied, as well as their dependence on the atomic number. The photon emission from laser-generated plasma produced by solid targets, such as boron nitride (BN) and other elements (Al, Cu, Sn and Ta) and compounds such as polyethylene, has been compared with that coming from plasma produced by irradiating different gas-puff targets based on N2 and other gases (Ar, Xe, Kr, SF6). The experimental results demonstrated that the yields are comparable and, in both cases, increase proportionally to the target atomic number. The obtained results, focusing the attention on the advantages and drawbacks of the employed targets, are presented and discussed.
  • [1]
    Giulietti D and Gizzi L A 1998 Riv. Nuovo Cim. 21 1
    [2]
    Torrisi L, Torrisi A and Cutroneo M 2020 Contrib. Plasma Phys. 60 e202000012
    [3]
    Eliezer S 2002 The Interaction of High-Power Lasers with Plasmas (Bristol: Institute of Physics Publishing)
    [4]
    Hafez M A et al 2003 Plasma Sources Sci. Technol 12 185
    [5]
    Wachulak P W et al 2010 Nucl. Instrum. Methods Phys. Res. B 268 1692
    [6]
    Torrisi A et al 2019 Phys. Rev. Accel. Beams 22 052901
    [7]
    Wachulak P et al 2019 APL Photonics 4 030807
    [8]
    Pepper S V and Wheeler D R 2000 Rev. Sci. Instrum. 71 1509
    [9]
    Torrisi L et al 2009 J. Appl. Phys. 105 123304
    [10]
    Torrisi A et al 2020 Appl. Sci. 10 8338
    [11]
    Wachulak P W et al 2010 Appl. Phys. B 100 461
    [12]
    Bertuccio G and Casiraghi R 2003 IEEE Trans. Nucl. Sci.50 175
    [13]
    Torrisi A et al 2017 IEEE Trans. Electron Dev. 64 1120
    [14]
    NIST Atomic Spectra Database Ionization Energies Form,https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
    [15]
    CXRO Center for X-ray optics database, http://henke.lbl.gov/optical_constants/
    [16]
    Torrisi L, Cutroneo M and Torrisi A 2020 Contrib. Plasma Phys. 60 e201900076
    [17]
    Torrisi L and Torrisi A 2019 Radiat. Eff. Defects Solids 174 76
    [18]
    Torrisi L 2016 Radiat. Eff. Defects Solids 171 34
    [19]
    Fiedorowicz H et al 2000 Appl. Phys. B 70 305
    [20]
    Rakowski R et al 2010 Appl. Phys. B 101 773
    [21]
    Moscicki T 2016 Int. J. Opt. 2016 5438721
    [22]
    Bartnik A et al 2016 Plasma Phys. Control. Fusion 58 014009
    [23]
    Rakowski R et al 2011 Appl. Phys. B 102 559
    [24]
    Láska L et al 2002 Rev. Sci. Instrum. 73 654
    [25]
    Seltzer S M 1988 Cross sections for bremsstrahlung production and electron impact ionization Monte Carlo Transport of Electrons and Photons ed T M Jenkins et al (New York: Plenum)
    [26]
    Yang X and Wei B 2016 Sci. Rep. 6 37214
    [27]
    Kanaev A V and Petitet J P 2004 J. Appl. Phys. 96 4483
    [28]
    Museur L et al 2007 J. Lumin. 127 595
  • Related Articles

    [1]Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a
    [2]Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e
    [3]A. PONOMARENKO, A. YASHIN, V. GUSEV, E. KISELEV, G. KURSKIEV, V. MINAEV, Y. PETROV, N. SAKHAROV, P. SHCHEGOLEV, E. TKACHENKO, N. ZHILTSOV. First results of turbulence investigation on Globus-M2 using radial correlation Doppler reflectometry[J]. Plasma Science and Technology, 2024, 26(10): 105101. DOI: 10.1088/2058-6272/ad5fe5
    [4]Weice WANG, Jun CHENG, Zhongbing SHI, Longwen YAN, Zhihui HUANG, Kaiyang YI, Na WU, Yu HE, Qian ZOU, Xi CHEN, Wen ZHANG, Jian CHEN, Lin NIE, Xiaoquan JI, Wulyu ZHONG. An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma[J]. Plasma Science and Technology, 2024, 26(3): 034018. DOI: 10.1088/2058-6272/ad1c76
    [5]Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56
    [6]Min JIANG (蒋敏), Yuhong XU (许宇鸿), Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Wei CHEN (陈伟), Rui KE (柯锐), Jiquan LI (李继全), Xuantong DING (丁玄同), Jun CHENG (程钧), Xiaoquan JI (季小全), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Jie WEN (闻杰), Kairui FANG (方凯锐), Na WU (吴娜), Xiaoxue HE (何小雪), Anshu LIANG (梁桉树), Yi LIU (刘仪), Qingwei YANG (杨青巍), Min XU (许敏), HL-A Team. Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas[J]. Plasma Science and Technology, 2020, 22(8): 80501-080501. DOI: 10.1088/2058-6272/ab8785
    [7]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [8]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [9]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [10]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
  • Cited by

    Periodical cited type(10)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484
    3. Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566
    4. Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131
    5. Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949
    6. Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271
    7. Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588
    8. Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848
    9. Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744
    10. Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915

    Other cited types(0)

Catalog

    Article views (85) PDF downloads (116) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return