Advanced Search+
Daoman HAN (韩道满), Zixuan SU (苏子轩), Kai ZHAO (赵凯), Yongxin LIU (刘永新), Fei GAO (高飞), Younian WANG (王友年). Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area, very-high frequency capacitive argon discharge[J]. Plasma Science and Technology, 2021, 23(5): 55402-055402. DOI: 10.1088/2058-6272/abf72a
Citation: Daoman HAN (韩道满), Zixuan SU (苏子轩), Kai ZHAO (赵凯), Yongxin LIU (刘永新), Fei GAO (高飞), Younian WANG (王友年). Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area, very-high frequency capacitive argon discharge[J]. Plasma Science and Technology, 2021, 23(5): 55402-055402. DOI: 10.1088/2058-6272/abf72a

Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area, very-high frequency capacitive argon discharge

Funds: This work was funded by National Natural Science Foundation of China (Nos. 11875100, 11935005 and 11722541). The author Daoman Han also appreciates the financial support from the China Scholarship Council.
More Information
  • Received Date: January 17, 2021
  • Revised Date: April 10, 2021
  • Accepted Date: April 11, 2021
  • We performed an experimental investigation on the electromagnetic effect and the plasma radial uniformity in a larger-area, cylindrical capacitively coupled plasma reactor. By utilizing a floating hairpin probe, dependences of the plasma radial density on the driving frequency and the radio-frequency power over a wide pressure range of 5–40 Pa were presented. At a relatively low frequency (LF, e.g. 27 MHz), an evident peak generally appears near the electrode edge for all pressures investigated here due to the edge field effect, while at a very high frequency (VHF, e.g. 60 or 100 MHz), the plasma density shows a sharp peak at the discharge center at lower pressures, indicating a strong standing wave effect. As the RF power increases, the center-peak structure of plasma density becomes more evident. With increasing the pressure, the standing wave effect is gradually overwhelmed by the 'stop band' effect, resulting in a transition in the plasma density profile from a central peak to an edge peak. To improve the plasma radial uniformity, a LF source is introduced into the VHF plasma by balancing the standing wave effect with the edge effect. A much better plasma uniformity can be obtained if one chooses appropriate LF powers, pressures and other corresponding discharge parameters.
  • [1]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd ed (New York: Wiley)
    [2]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
    [3]
    Sharma S et al 2019 Phys. Plasmas 26 103508
    [4]
    Wilczek S et al 2015 Plasma Sources Sci. Technol. 24 024002
    [5]
    Sharma S et al 2021 J. Phys. D: Appl. Phys. 54 055205
    [6]
    Lieberman M A et al 2002 Plasma Sources Sci. Technol.11 283
    [7]
    Chabert P et al 2005 Phys. Rev. Lett. 95 205001
    [8]
    Chabert P et al 2006 Plasma Sources Sci. Technol. 15 S130
    [9]
    Perret A et al 2003 Appl. Phys. Lett. 83 243
    [10]
    Lee I, Graves D B and Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
    [11]
    Liu Y X et al 2014 J. Appl. Phys. 116 043303
    [12]
    Mussenbrock T et al 2008 Plasma Sources Sci. Technol. 17 025018
    [13]
    Rauf S, Bera K and Collins K 2008 Plasma Sources Sci.Technol. 17 035003
    [14]
    Zhang Y R et al 2010 Phys. Plasmas 17 113512
    [15]
    Upadhyay R R et al 2013 J. Phys. D: Appl. Phys. 46 472001
    [16]
    Perret A et al 2005 Appl. Phys. Lett. 86 021501
    [17]
    Ahn S K and Chang H Y 2008 Appl. Phys. Lett. 93 031506
    [18]
    Satake K, Yamakoshi H and Noda M 2004 Plasma Sources Sci. Technol. 13 436
    [19]
    Liu Y X et al 2015 Plasma Sources Sci. Technol. 24 025013
    [20]
    Miller P A et al 2006 Plasma Sources Sci. Technol. 15 889
    [21]
    Sawada I et al 2014 Japan. J. Appl. Phys. 53 03DB01
    [22]
    Zhao K et al 2018 Rev. Sci. Instrum. 89 105104
    [23]
    Zhao K et al 2019 Phys. Rev. Lett. 122 185002
    [24]
    Schmidt H et al 2004 J. Appl. Phys. 95 4559
    [25]
    Sansonnens L and Schmitt J 2003 Appl. Phys. Lett. 82 182
    [26]
    Sung D et al 2012 J. Vac. Sci. Technol. A 30 061301
    [27]
    Yang Y and Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001
    [28]
    Yang Y and Kushner M J 2010 J. Appl. Phys. 108 113306
    [29]
    Sirse N et al 2020 J. Phys. D: Appl. Phys. 53 335203
    [30]
    Monaghan E et al 2011 Thin Solid Films. 519 6884
    [31]
    Sung D et al 2009 J. Vac. Sci. Technol. A 27 13
    [32]
    Sung D Y et al 2009 J. Appl. Phys. 106 023303
    [33]
    Xu X et al 2010 J. Appl. Phys. 108 043308
    [34]
    Zhang Y R et al 2012 J. Phys. D: Appl. Phys. 45 015203
    [35]
    Bera K, Rauf S and Collins K 2008 IEEE Trans. Plasma Sci.36 1366
    [36]
    Zhao K et al 2016 Phys. Plasmas 23 123512
    [37]
    Han D M et al 2018 J. Appl. Phys. 123 223304
    [38]
    Sansonnens L, Howling A A and Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302
    [39]
    Gao F et al 2014 Phys. Plasmas 21 083507
    [40]
    Han D M et al 2016 J. Appl. Phys. 119 113302
    [41]
    Han D M et al 2018 Chin. Phys. B 27 065202
    [42]
    Piejak R B, Al-Kuzee J and Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734
    [43]
    Piejak R B et al 2004 J. Appl. Phys. 95 3785
    [44]
    Setsuhara Y, Tsukiyama D and Takenaka K 2008 Surf. Coat.Technol. 202 5238
  • Related Articles

    [1]Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383
    [4]Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06
    [5]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [6]K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
    [7]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [8]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [9]QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14
    [10]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
  • Cited by

    Periodical cited type(13)

    1. Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301
    2. Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130
    3. An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827
    4. Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343
    5. Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762
    6. Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559
    7. Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410
    8. An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091
    9. Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113
    10. Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871
    11. Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880
    12. An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8
    13. Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de

    Other cited types(0)

Catalog

    Article views (123) PDF downloads (172) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return