Advanced Search+
Miao LIU (刘淼), Anmin CHEN (陈安民), Yutong CHEN (陈雨桐), Xiangyu ZENG (曾祥榆), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Dapeng YANG (杨大鹏), Mingxing JIN (金明星). Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(7): 75501-075501. DOI: 10.1088/2058-6272/abf997
Citation: Miao LIU (刘淼), Anmin CHEN (陈安民), Yutong CHEN (陈雨桐), Xiangyu ZENG (曾祥榆), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Dapeng YANG (杨大鹏), Mingxing JIN (金明星). Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(7): 75501-075501. DOI: 10.1088/2058-6272/abf997

Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy

Funds: We acknowledge the support by the Scientific and Technological Research Project of the Education Department of Jilin Province, China (No. JJKH20200937KJ), and National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138).
More Information
  • Received Date: January 06, 2021
  • Revised Date: April 14, 2021
  • Accepted Date: April 18, 2021
  • In this paper, we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air. A brass was selected as ablated target of the experiment. The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers, and the two parameters were improved by increasing the sample temperature in both cases. Moreover, the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma, and the increase of the plasma temperature in the case of nanosecond laser was more evident. In addition, there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas. The electron density for femtosecond laser decreased with increasing the target temperature, while for nanosecond laser, the electron density was almost unchanged at different sample temperatures.
  • [1]
    Hou Z et al 2020 Plasma Sci. Technol. 22 070101
    [2]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [3]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [4]
    Wang Z et al 2014 Front. Phys. 9 419
    [5]
    Zhang D et al 2018 Spectrochim. Acta B 143 71
    [6]
    Yin H L et al 2015 J. Anal. At. Spectrom. 30 922
    [7]
    Wu D et al 2018 Appl. Spectrosc. 72 225
    [8]
    Xu W et al 2019 J. Anal. At. Spectrom. 34 1018
    [9]
    Xu W et al 2019 J. Anal. At. Spectrom. 34 2288
    [10]
    Michel A P M 2010 Spectrochim. Acta B 65 185
    [11]
    Sambri A et al 2008 J. Appl. Phys. 104 053304
    [12]
    Wang T et al 2018 Spectrochim. Acta B 149 300
    [13]
    Qi H et al 2014 J. Anal. At. Spectrom. 29 1105
    [14]
    Palanco S et al 2004 J. Anal. At. Spectrom. 19 462
    [15]
    Sallé B et al 2005 Spectrochim. Acta B 60 479
    [16]
    Harmon R S et al 2013 Spectrochim. Acta B 87 11
    [17]
    Shen X K et al 2009 Appl. Opt. 48 2551
    [18]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [19]
    Gurevich E L et al 2007 Appl. Spectrosc. 61 233A
    [20]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [21]
    Verhoff B et al 2012 J. Appl. Phys. 111 123304
    [22]
    Freeman J R et al 2013 Spectrochim. Acta B 87 43
    [23]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [24]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [25]
    Verhoff B et al 2012 J. Appl. Phys. 112 093303
    [26]
    Elhassan A et al 2008 Spectrochim. Acta B 63 504
    [27]
    Eschlböck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [28]
    Zhang D et al 2018 Phys. Plasmas 25 083305
    [29]
    Sambri A et al 2007 Appl. Phys. Lett. 91 151501
    [30]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [31]
    Thorstensen J et al 2012 J. Appl. Phys. 112 103514
    [32]
    Tavassoli S H et al 2009 Opt. Laser Technol. 41 481
    [33]
    Sanginés R et al 2012 Spectrochim. Acta B 68 40
    [34]
    Guo J et al 2018 J. Anal. At. Spectrom. 33 2116
    [35]
    Wang Q et al 2020 Opt. Laser Technol. 121 105773
    [36]
    Wang Y et al 2018 Phys. Plasmas 25 033302
    [37]
    Jiang Z et al 2018 Plasma Sci. Technol. 20 085503
    [38]
    Guo J et al 2017 J. Anal. At. Spectrom. 32 367
    [39]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009
    [40]
    Yang X et al 2019 Acta Phys. Sin. 68 065201
    [41]
    Yang L et al 2020 Chinese Phys. B 29 65203
    [42]
    Chen A M et al 2015 Opt. Express 23 24648
    [43]
    Wang Y et al 2020 Phys. Plasmas 27 023507
    [44]
    Ujihara K 1972 J. Appl. Phys. 43 2376
    [45]
    Harilal S S et al 2015 Opt. Express 23 15608
    [46]
    Shao J et al 2020 Plasma Sci. Technol. 22 074001
    [47]
    Wang Q et al 2019 J. Anal. At. Spectrom. 34 1242
    [48]
    Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
    [49]
    Chen A M et al 2015 Phys. Plasmas 22 033301
    [50]
    Guo K et al 2019 AIP Adv. 9 065214
    [51]
    Zhang D et al 2020 Optik 202 163511
  • Related Articles

    [1]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [2]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [3]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [6]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [7]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [8]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (148) PDF downloads (312) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return