Advanced Search+
Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2
Citation: Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2

Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas

Funds: This work is supported by National Key Research and Development Program of China (Nos. 2018YFE0311100, 2017YFE0300402, 2017YFE0301300), National Natural Science Foundation of China (Nos. Nos. 11905146, 11775269, U1832126, 11805133), Hefei Science Center High-end User Development Fund Project (2019HSC-UE014) and Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) (2020VMA0001)
More Information
  • Received Date: March 25, 2021
  • Revised Date: April 29, 2021
  • Accepted Date: May 05, 2021
  • Extreme ultraviolet (EUV) spectra emitted from low-Z impurity ions in the wavelength range of 10–500 Å were observed in Experimental Advanced Superconducting Tokamak (EAST) discharges. Several spectral lines from K- and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon, oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using well-known spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He II, Li II–III, B IV–V, C III–VI, O III–VIII, Ne II–X, Si V–XII, and Ar X–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in Te0 = 0.6–2.8 keV and ne = (0.5–6.0) × 1019 m−3, respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.
  • [1]
    Eckstein W, Bohdansky J and Roth J 1991 Suppl. Nucl. Fusion1 51 www-pub.iaea.org/MTCD/publications/PDF/Pub23_web.pdf
    [2]
    Roth J 1983 Chemical sputtering ed R Behrish Sputtering by Particle Bombardment II (Berlin: Springer)
    [3]
    Zhao X B et al 2004 Science 306 1012
    [4]
    Yao D M et al 2015 Fusion Eng. Des. 98–99 1692
    [5]
    Hu J S et al 2009 Fusion Eng. Des. 84 2167
    [6]
    Zuo G Z et al 2012 Plasma Phys. Control. Fusion 54015014
    [7]
    Sun Z et al 2014 Fusion Eng. Des. 89 2886
    [8]
    Sun Z et al 2019 Nucl. Mater. Energy 19 124
    [9]
    Hu J S et al 2015 Phys. Rev. Lett. 115 169901
    [10]
    Jackson G L et al 2002 Nucl. Fusion 42 28
    [11]
    Reimold F et al 2015 Nucl. Fusion 55 033004
    [12]
    Wang D S et al 2013 Plasma Sci. Technol. 15 614
    [13]
    Tokar M Z et al 1999 Plasma Phys. Control. Fusion 41 B317
    [14]
    Wu K et al 2018 Nucl. Fusion 58 056019
    [15]
    Zhou H Y et al 2014 Plasma Sci. Technol. 16 89
    [16]
    Dong C F et al 2011 Plasma Fusion Res 6 2402078
    [17]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [18]
    Zhang L et al 2019 Nucl. Instrum. Methods Phys. Res. A916 169
    [19]
    Zhang L et al 2017 Nucl. Mater. Energy 12 774
    [20]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [21]
    Kramida A et al NIST atomic spectra database 78 [2020-01-06]https://doi.org/10.18434/T4W30F
    [22]
    Yao L M et al 2019 Spectrosc. Spect. Anal. 39 2645 (in Chinese)
    [23]
    Yang X D et al 2018 Spectrosc. Spect. Anal. 38 1262 (inChinese)
    [24]
    Dong C F et al 2011 Rev. Sci. Instrum. 82 113102
    [25]
    Dong C F et al 2012 Plasma Fusion Res. 7 2402139
    [26]
    Kelly R L 1987 Atomic and Ironic Spectrum Lines below 2000 Angstroms: Hydrogen Through Krypton Part I (H—Cr)(New York: The American Chemical Society and the American Institute of Physics for the National Bureau of Standards)
  • Related Articles

    [1]Ruihai TONG, Yu ZHOU, Wulyu ZHONG, Jie WEN, Zhongbing SHI, Xiaolan ZOU, Anshu LIANG, Zengchen YANG, Min JIANG, Xin YU, Yuqi SHEN. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak[J]. Plasma Science and Technology, 2025, 27(1): 015102. DOI: 10.1088/2058-6272/ad8c86
    [2]Kexi Han, Zhongbing Shi, Xin Yu, Min Jiang, Zengchen Yang, Yu Zhou, Yuqi Shen, Weichu Deng, Liwen Hu, Anshu Liang, Peiwan Shi, Sen Xu. Quasi-optical characterization and preliminary experimental results of electron cyclotron emission imaging on HL-3 tokamak[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc29a
    [3]Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e
    [4]Junren MOU, Yonggao LI, Yuan LI, Zaihong WANG, Baogang DING, Haoxi WANG, Jiang YI, Zhongbing SHI. Electron density measurement by the three boundary channels of HCOOH laser interferometer on the HL-3 tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034013. DOI: 10.1088/2058-6272/ad127a
    [5]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [6]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [7]CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04
    [8]HU Jing (胡菁), ZHANG Yanwen (张艳文), WANG Xianping (王先平), et al.. Effects of Si 3+ and H + Irradiation on Tungsten Evaluated by Internal Friction Method[J]. Plasma Science and Technology, 2013, 15(10): 1071-1075. DOI: 10.1088/1009-0630/15/10/20
    [9]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Article views (104) PDF downloads (108) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return