Advanced Search+
Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008
Citation: Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008

Visualization of gold nanoparticles formation in DC plasma-liquid systems

Funds: Q Chen thanks the Basic Research Program of Science and Technology of Shenzhen, China (No. JCYJ20190809162617137) and National Natural Science Foundation of China (No. 52077185) for partial financial support.
More Information
  • Received Date: January 25, 2021
  • Revised Date: May 10, 2021
  • Accepted Date: May 10, 2021
  • Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(III) trihydrate (HAuCl4 centerdot 3H2O) which is contained in an H-type electrochemical cell. The solution contained in one cell acts as a cathode, and in the other as an anode. Experiments are carried out to directly visualize the formation process of gold nanoparticles (AuNPs) in separated cells of the H-type electrochemical reactor. The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions, respectively. Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode, while most of hydrated electrons are formed in the case of the liquid being an anode. Therefore, the reduction of the AuCl4 ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode, while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode. Moreover, the pH value of the solution can be used to tune the formation processes and the final form of the AuNPs due to its mediation of reductants.
  • [1]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [2]
    Gupta S K S 2015 Plasma Sources Sci. Technol. 24 063001
    [3]
    Hickling A and Ingram M D 1964 Trans. Faraday Soc. 60 783
    [4]
    Hickling A and Ingram M D 1964 J. Electroanal. Chem. 8 65
    [5]
    Denaro A R and Hickling A 1958 J. Electrochem. Soc. 105 265
    [6]
    Davies R A and Hickling A 1952 J. Chem. Soc. 3595–602
    [7]
    Foster J E 2017 Phys. Plasmas 24 055501
    [8]
    Yang D Z et al 2014 Plasma Process. Polym. 11 842
    [9]
    Liu Y J et al 2016 J. Hazard Mater. 308 84
    [10]
    Wang L and Jiang X Z 2008 Environ. Sci. Technol. 42 8492
    [11]
    Wang R X et al 2014 Plasma Process. Polym. 11 448
    [12]
    Saito G and Akiyama T 2015 J. Nanomater. 2015 123696
    [13]
    Liu J D et al 2016 Electrochim. Acta 222 1677
    [14]
    Kondeti V S S K et al 2017 J. Vac. Sci. Technol. A 35 061302
    [15]
    Gupta S K S 2017 Plasma Chem. Plasma Process. 37 897
    [16]
    Chen Q et al 2015 J. Phys. D: Appl. Phys. 48 424005
    [17]
    Brettholle M et al 2010 Phys. Chem. Chem. Phys. 12 1750
    [18]
    Höfft O and Endres F 2011 Phys. Chem. Chem. Phys. 13 13472
    [19]
    Richmonds C and Sankaran R M 2008 Appl. Phys. Lett. 93 131501
    [20]
    Huang X Z et al 2013 Nanotechnology 24 095604
    [21]
    Baba K et al 2010 Chem. Commun. 46 255
    [22]
    Kaneko T et al 2009 Plasma Process. Polym. 6 713
    [23]
    Shirafuji T et al 2013 Japan. J. Appl. Phys. 52 126202
    [24]
    Velusamy T et al 2017 Plasma Process. Polym. 14 1600224
    [25]
    Hatakeyama R 2017 Rev. Mod. Plasma Phys. 1 7
    [26]
    Gong X N et al 2018 J. Electrochem. Soc. 165 E540
    [27]
    Huang H et al 2020 Chem. Commun. 56 221
    [28]
    Mariotti D et al 2012 Plasma Process. Polym. 9 1074
    [29]
    Di L B et al 2016 Adv. Mater. Interfaces 3 1600760
    [30]
    Zhan Z B et al 2016 Plasma Sci. Technol. 18 494
    [31]
    Huang Y F et al 2016 IEEE Trans. Plasma Sci. 44 938
    [32]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [33]
    Kong M G et al 2009 New J. Phys. 11 115012
    [34]
    Puač N, Gherardi M and Shiratani M 2018 Plasma Process.Polym. 15 1700174
    [35]
    Misra N, Schlüter O and Cullen P J 2016 Cold Plasma in Food and Agriculture: Fundamentals and Applications (New York: Academic)
    [36]
    Chen Q et al 2012 Appl. Phys. Express 5 086201
    [37]
    Kaneko T et al 2011 Plasma Sources Sci. Technol. 20 034014
    [38]
    Rumbach P et al 2013 J. Am. Chem. Soc. 135 16264
    [39]
    Rumbach P, Bartels D M and Go D B 2018 Plasma Sources Sci. Technol. 27 115013
    [40]
    Richmonds C et al 2011 J. Am. Chem. Soc. 133 17582
    [41]
    Lin J et al 2020 Eur. Phys. J. D 74 80
    [42]
    Chen Q et al 2019 J. Phys. D: Appl. Phys. 52 425205
    [43]
    Tochikubo F et al 2014 Japan. J. Appl. Phys. 53 126201
    [44]
    Shirai N et al 2014 Japan. J. Appl. Phys. 53 046202
    [45]
    Nash T 1953 Biochem. J. 55 416
    [46]
    Ma Y et al 2018 J. Phys. D: Appl. Phys. 51 155205
    [47]
    Yu R et al 2021 Plasma Sci. Technol. 23 055504
    [48]
    Pacławski K and Sak T 2015 J. Min. Metall. B 51 133
    [49]
    LaMer V K and Dinegar R H 1950 J. Am. Chem. Soc. 72 4847
    [50]
    Harris D C 2010 Quantitative Chemical Analysis 8th edn (New York: W. H. Freeman and Company)
    [51]
    Schwarz H A 1981 J. Chem. Educ. 58 101
    [52]
    Bratsch S G 1989 J. Phys. Chem. Ref. Data 18 1
    [53]
    Haynes W M, Lide D R and Bruno T J 2012 CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press)
    [54]
    Choi H C et al 2002 J. Am. Chem. Soc. 124 9058
    [55]
    He X et al 2018 Plasma Sources Sci. Technol. 27 085010
    [56]
    Chen Z et al 2018 J. Phys. D: Appl. Phys. 51 325201
    [57]
    Buxton G V et al 1988 J. Phys. Chem. Ref. Data 17 513
    [58]
    Sahni M and Locke B R 2006 Ind. Eng. Chem. Res. 45 5819
    [59]
    Park S E et al 2006 Bull. Korean Chem. Soc. 27 1341
    [60]
    Anderson M L et al 1999 Langmuir 15 674
  • Related Articles

    [1]Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Hongshan ZHU (祝宏山), Shengxia DUAN (段升霞), Lei CHEN (陈磊), Ahmed ALSAEDI, Tasawar HAYAT, Jiaxing LI (李家星). Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115501. DOI: 10.1088/2058-6272/aa8168
    [4]Qi WANG (王奇), Yanhui WANG (王艳辉), Haochen WANG (王灏宸), Zhanhui WANG (王占辉), Hongbin DING (丁洪斌). Investigation of NO removal using a pulseassisted RF discharge[J]. Plasma Science and Technology, 2017, 19(6): 64013-064013. DOI: 10.1088/2058-6272/aa607b
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [7]ZHOU Nengtao(周能涛), WU Jiefeng(吴杰峰), ZHANG Ping(张平), WANG Xueqin(王学勤), LU Yu(卢禹). A Nickel Coating Removal Process for ITER Superconducting Cables[J]. Plasma Science and Technology, 2014, 16(5): 532-539. DOI: 10.1088/1009-0630/16/5/15
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.
    [10]ZHANG Yue, LI Duan, WANG Hongchang. Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage[J]. Plasma Science and Technology, 2010, 12(6): 702-707.
  • Cited by

    Periodical cited type(7)

    1. Sun, T., Jiang, X., Li, Z. et al. Characterization of fast ion loss in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024002. DOI:10.1088/2058-6272/ad8dfb
    2. Wang, F., Gu, X., Hua, J. et al. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024009. DOI:10.1088/2058-6272/adadb8
    3. Jiang, X., Shi, Y., Song, S. et al. Physics design of current drive and strategy of heating system for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024012. DOI:10.1088/2058-6272/adae71
    4. Wang, Y., Li, K., Huang, Z. et al. Predictions of H-mode access and edge pedestal instability in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024005. DOI:10.1088/2058-6272/ad9f27
    5. Shi, Y., Song, X., Guo, D. et al. Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project. Plasma Science and Technology, 2025, 27(2): 024003. DOI:10.1088/2058-6272/ad9e8f
    6. Li, Z., Sun, T., Liu, B. et al. Evaluation of thermal and beam-thermal p-11B fusion reactions in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024004. DOI:10.1088/2058-6272/ad9da2
    7. Dong, L., Li, L., Liu, W. et al. Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024006. DOI:10.1088/2058-6272/ada421

    Other cited types(0)

Catalog

    Article views (128) PDF downloads (118) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return