Advanced Search+
Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81
Citation: Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81

Large eddy simulation on the flow characteristics of an argon thermal plasma jet

Funds: This work is supported by National Natural Science Foundation of China (No. 12035015).
More Information
  • Received Date: June 13, 2021
  • Revised Date: August 16, 2021
  • Accepted Date: August 18, 2021
  • Large eddy simulations based on the CFD software OpenFOAM have been used to study the effect of Reynolds number and turbulence intensity on the flow and mixing characteristics of an argon thermal plasma jet. Detailed analysis was carried out with respect to four aspects: the average flow field, the instantaneous flow field, turbulence statistical characteristics and the self-similarity. It was shown that for the argon thermal plasma jet with low Reynolds number, increasing the turbulence intensity will increase the turbulent transport mechanism in the mixing layer rather than in the jet axis, leading to the faster development of turbulence. The effect of the turbulent transport mechanism increases with increasing Reynolds number. However, the characteristics of flow and mixing are not affected by turbulence intensity for high Reynolds number situations. It was also found that the mean axial velocity and mean temperature in the axis of the turbulent thermal plasma jet satisfy the self-similarity aspects downstream. In addition, decay constant K is 1.25, which is much smaller than that (5.7–6.1) of the turbulent cold gas jet and has nothing to do with the Reynolds number or turbulence intensity in the jet inlet.
  • [1]
    Fauchais P and Vardelle A 2000 Plasma Phys. Control. Fusion 42 B365
    [2]
    Pfender E 1999 Plasma Chem. Plasma Process. 19 1
    [3]
    An H et al 2018 Fuel Process. Technol. 172 195
    [4]
    Fincke J R et al 2002 Plasma Chem. Plasma Process. 22 105
    [5]
    Fincke J R et al 2002 Ind. Eng. Chem. Res. 41 1425
    [6]
    Kim K S et al 2005 IEEE Trans. Plasma Sci. 33 813
    [7]
    Li J et al 2003 Plasma Sci. Technol. 5 1815
    [8]
    Cheng K et al 2006 Plasma Chem. Plasma Process. 26 211
    [9]
    Williamson R L et al 2003 Int. J. Heat Mass Transfer 46 4215
    [10]
    Cheng K and Chen X 2004 Int. J. Heat Mass Transfer 47 5139
    [11]
    Ramshaw J D and Chang C H 1992 Plasma Chem. Plasma Process. 12 299
    [12]
    Fincke J R et al 2003 Int. J. Heat Mass Transfer 46 4201
    [13]
    Xu D Y and Chen X 2005 Int. Commun. Heat Mass Transfer 32 939
    [14]
    Xu D Y, Chen X and Pan W X 2005 Int. J. Heat Mass Transfer 48 3253
    [15]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
    [16]
    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922
    [17]
    Murphy A B 1995 Plasma Chem. Plasma Process. 15 279
    [18]
    Pan W X et al 2001 Plasma Chem. Plasma Process. 21 23
    [19]
    Ye R B, Proulx P and Boulos M I 1999 Int. J. Heat Mass Transfer 42 1585
    [20]
    Huang P C, Hebeylein J and Pfender E 1995 Plasma Chem.Plasma Process. 15 25
    [21]
    Marchand C et al 2007 J. Therm. Spray Technol. 16 705
    [22]
    Shigeta M 2016 J. Phys. D: Appl. Phys. 49 493001
    [23]
    Shigeta M 2013 J. Phys. D: Appl. Phys. 46 015401
    [24]
    Shigeta M 2012 Plasma Sources Sci. Technol. 21 055029
    [25]
    Shigeta M 2019 IEEJ Trans. Electr. Electron. Eng. 14 16
    [26]
    Colombo V et al 2011 IEEE Trans. Plasma Sci. 39 2894
    [27]
    Smagorinsky J 1963 Mon. Weather Rev. 91 99
    [28]
    Jasak H, Jemcov A and Tukovic Z 2007 OpenFOAM: A C++ library for complex physics simulations Int. Workshop on Coupled Methods in Numerical Dynamics (Dubrovnik,Croatia) (IUC) p 1
    [29]
    Dilawari A H et al 1990 Plasma Chem. Plasma Process.10 321
    [30]
    Chang C H and Ramshaw J D 1993 Plasma Chem. Plasma Process. 13 189
    [31]
    Patankar S V and Spalding D B 1972 Int. J. Heat Mass Transfer 15 1787
    [32]
    Issa R I 1986 J. Comput. Phys. 62 40
    [33]
    Hunt J C R, Wray A A and Moin P 1988 Eddies, streams, and convergence zones in turbulent flows Proc. of the Summer Program 1988 N89–24555
    [34]
    Pfender E, Fincke J and Spores R 1991 Plasma Chem. Plasma Process. 11 529
    [35]
    Boersma B J, Brethouwer G and Nieuwstadt F T M 1998 Phys.Fluids 10 899
    [36]
    Mi J and Nathan G J 2001 J. Fluid Mech. 432 91
    [37]
    Burattini P, Antonia R A and Danaila L 2005 Phys. Fluids 17 025101
    [38]
    Ball C G, Fellouah H and Pollard A 2012 Prog. Aeosp. Sci.50 1
    [39]
    Wang P et al 2008 Int. J. Heat Fluid Flow 29 654
  • Related Articles

    [1]Xu ZHOU, Xianhui CHEN, Taohong YE, Minming ZHU, Weidong XIA. Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet[J]. Plasma Science and Technology, 2022, 24(5): 055409. DOI: 10.1088/2058-6272/ac52eb
    [2]Jianyang YU (俞建阳), Huaping LIU (刘华坪), Ruoyu WANG (王若玉), Fu CHEN (陈浮). Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma[J]. Plasma Science and Technology, 2017, 19(1): 15502-015502. DOI: 10.1088/1009-0630/19/1/015502
    [3]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [4]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [5]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [6]WEI Yu(魏钰), ZUO Xiao(左潇), CHEN Longwei(陈龙威), MENG Yuedong(孟月东), FANG Shidong(方世东), SHEN Jie(沈洁), SHU Xingsheng(舒兴胜). Linear Plasma Sources for Large Area Film Deposition: A Brief Review[J]. Plasma Science and Technology, 2014, 16(4): 356-362. DOI: 10.1088/1009-0630/16/4/10
    [7]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [8]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [9]DING Liang (丁亮), HUO Wenqing (霍文青), YANG Xinjie (杨新杰), XU Yuemin (徐跃民). The Interaction of C-Band Microwaves with Large Plasma Sheets[J]. Plasma Science and Technology, 2012, 14(1): 9-13. DOI: 10.1088/1009-0630/14/1/03
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(5)

    1. Niu, Y., Bao, W., Liu, D. et al. Analysis of enthalpy and energy conversion efficiency in high-power inductively coupled plasma. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113220
    2. Zhou, X., Chen, X., Ye, T. et al. Quasi-direct numerical simulations of the flow characteristics of a thermal plasma reactor with counterflow jet. Plasma Science and Technology, 2023, 25(7): 075403. DOI:10.1088/2058-6272/acb9d8
    3. Niu, Y., Bao, W., Liu, D. et al. Thermodynamic Parameters and Energy Transfer Analysis of High Enthalpy Inductively Coupled Plasma. 2023. DOI:10.1109/CSRSWTC60855.2023.10427285
    4. Zhou, X., Chen, X., Ye, T. et al. Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet. Plasma Science and Technology, 2022, 24(5): 055409. DOI:10.1088/2058-6272/ac52eb
    5. Bykov, N.Y., Obraztsov, N.V., Hvatov, A.A. et al. Hybrid modeling of gas-dynamic processes in AC plasma torches. Materials Physics and Mechanics, 2022, 50(2): 287-303. DOI:10.18149/MPM.5022022_9

    Other cited types(0)

Catalog

    Article views (131) PDF downloads (122) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return