Advanced Search+
Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81
Citation: Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81

Large eddy simulation on the flow characteristics of an argon thermal plasma jet

Funds: This work is supported by National Natural Science Foundation of China (No. 12035015).
More Information
  • Received Date: June 13, 2021
  • Revised Date: August 16, 2021
  • Accepted Date: August 18, 2021
  • Large eddy simulations based on the CFD software OpenFOAM have been used to study the effect of Reynolds number and turbulence intensity on the flow and mixing characteristics of an argon thermal plasma jet. Detailed analysis was carried out with respect to four aspects: the average flow field, the instantaneous flow field, turbulence statistical characteristics and the self-similarity. It was shown that for the argon thermal plasma jet with low Reynolds number, increasing the turbulence intensity will increase the turbulent transport mechanism in the mixing layer rather than in the jet axis, leading to the faster development of turbulence. The effect of the turbulent transport mechanism increases with increasing Reynolds number. However, the characteristics of flow and mixing are not affected by turbulence intensity for high Reynolds number situations. It was also found that the mean axial velocity and mean temperature in the axis of the turbulent thermal plasma jet satisfy the self-similarity aspects downstream. In addition, decay constant K is 1.25, which is much smaller than that (5.7–6.1) of the turbulent cold gas jet and has nothing to do with the Reynolds number or turbulence intensity in the jet inlet.
  • [1]
    Fauchais P and Vardelle A 2000 Plasma Phys. Control. Fusion 42 B365
    [2]
    Pfender E 1999 Plasma Chem. Plasma Process. 19 1
    [3]
    An H et al 2018 Fuel Process. Technol. 172 195
    [4]
    Fincke J R et al 2002 Plasma Chem. Plasma Process. 22 105
    [5]
    Fincke J R et al 2002 Ind. Eng. Chem. Res. 41 1425
    [6]
    Kim K S et al 2005 IEEE Trans. Plasma Sci. 33 813
    [7]
    Li J et al 2003 Plasma Sci. Technol. 5 1815
    [8]
    Cheng K et al 2006 Plasma Chem. Plasma Process. 26 211
    [9]
    Williamson R L et al 2003 Int. J. Heat Mass Transfer 46 4215
    [10]
    Cheng K and Chen X 2004 Int. J. Heat Mass Transfer 47 5139
    [11]
    Ramshaw J D and Chang C H 1992 Plasma Chem. Plasma Process. 12 299
    [12]
    Fincke J R et al 2003 Int. J. Heat Mass Transfer 46 4201
    [13]
    Xu D Y and Chen X 2005 Int. Commun. Heat Mass Transfer 32 939
    [14]
    Xu D Y, Chen X and Pan W X 2005 Int. J. Heat Mass Transfer 48 3253
    [15]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
    [16]
    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922
    [17]
    Murphy A B 1995 Plasma Chem. Plasma Process. 15 279
    [18]
    Pan W X et al 2001 Plasma Chem. Plasma Process. 21 23
    [19]
    Ye R B, Proulx P and Boulos M I 1999 Int. J. Heat Mass Transfer 42 1585
    [20]
    Huang P C, Hebeylein J and Pfender E 1995 Plasma Chem.Plasma Process. 15 25
    [21]
    Marchand C et al 2007 J. Therm. Spray Technol. 16 705
    [22]
    Shigeta M 2016 J. Phys. D: Appl. Phys. 49 493001
    [23]
    Shigeta M 2013 J. Phys. D: Appl. Phys. 46 015401
    [24]
    Shigeta M 2012 Plasma Sources Sci. Technol. 21 055029
    [25]
    Shigeta M 2019 IEEJ Trans. Electr. Electron. Eng. 14 16
    [26]
    Colombo V et al 2011 IEEE Trans. Plasma Sci. 39 2894
    [27]
    Smagorinsky J 1963 Mon. Weather Rev. 91 99
    [28]
    Jasak H, Jemcov A and Tukovic Z 2007 OpenFOAM: A C++ library for complex physics simulations Int. Workshop on Coupled Methods in Numerical Dynamics (Dubrovnik,Croatia) (IUC) p 1
    [29]
    Dilawari A H et al 1990 Plasma Chem. Plasma Process.10 321
    [30]
    Chang C H and Ramshaw J D 1993 Plasma Chem. Plasma Process. 13 189
    [31]
    Patankar S V and Spalding D B 1972 Int. J. Heat Mass Transfer 15 1787
    [32]
    Issa R I 1986 J. Comput. Phys. 62 40
    [33]
    Hunt J C R, Wray A A and Moin P 1988 Eddies, streams, and convergence zones in turbulent flows Proc. of the Summer Program 1988 N89–24555
    [34]
    Pfender E, Fincke J and Spores R 1991 Plasma Chem. Plasma Process. 11 529
    [35]
    Boersma B J, Brethouwer G and Nieuwstadt F T M 1998 Phys.Fluids 10 899
    [36]
    Mi J and Nathan G J 2001 J. Fluid Mech. 432 91
    [37]
    Burattini P, Antonia R A and Danaila L 2005 Phys. Fluids 17 025101
    [38]
    Ball C G, Fellouah H and Pollard A 2012 Prog. Aeosp. Sci.50 1
    [39]
    Wang P et al 2008 Int. J. Heat Fluid Flow 29 654
  • Related Articles

    [1]Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [4]Huijuan WANG (王慧娟), Guangshun ZHOU (周广顺), He GUO (郭贺), Cong GENG (耿聪). Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process[J]. Plasma Science and Technology, 2017, 19(1): 15504-015504. DOI: 10.1088/1009-0630/19/1/015504
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]JIA Shenli (贾申利), LI Rui (李瑞), LIU Jianjun (刘建军), LI Xingwen (李兴文), et al.. The Plasma Channel Evolution Characteristics of Pulsed Flashlamps Working in an Array[J]. Plasma Science and Technology, 2013, 15(7): 640-643. DOI: 10.1088/1009-0630/15/7/07
    [7]U. N. PAL, Pooja GULATI, Ram PRAKASH, Mahesh KUMAR, V. SRIVASTAVA, S. KONAR. Analysis of Power in an Argon Filled Pulsed Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(7): 635-639. DOI: 10.1088/1009-0630/15/7/06
    [8]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [9]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08
    [10]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
  • Cited by

    Periodical cited type(2)

    1. Jang, I., Lee, J., Jeong, S. Real-Time Interface Prediction During Laser Processing of Thin Film Layers by High-Resolution Femtosecond Laser-Induced Breakdown Spectroscopy. International Journal of Precision Engineering and Manufacturing - Green Technology, 2025. DOI:10.1007/s40684-025-00715-2
    2. Zhao, D., Zhu, H., Zhang, Z. et al. Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface. Journal of Materials Science, 2022. DOI:10.1007/s10853-022-07507-y

    Other cited types(0)

Catalog

    Article views (131) PDF downloads (122) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return