Advanced Search+
Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81
Citation: Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81

Large eddy simulation on the flow characteristics of an argon thermal plasma jet

Funds: This work is supported by National Natural Science Foundation of China (No. 12035015).
More Information
  • Received Date: June 13, 2021
  • Revised Date: August 16, 2021
  • Accepted Date: August 18, 2021
  • Large eddy simulations based on the CFD software OpenFOAM have been used to study the effect of Reynolds number and turbulence intensity on the flow and mixing characteristics of an argon thermal plasma jet. Detailed analysis was carried out with respect to four aspects: the average flow field, the instantaneous flow field, turbulence statistical characteristics and the self-similarity. It was shown that for the argon thermal plasma jet with low Reynolds number, increasing the turbulence intensity will increase the turbulent transport mechanism in the mixing layer rather than in the jet axis, leading to the faster development of turbulence. The effect of the turbulent transport mechanism increases with increasing Reynolds number. However, the characteristics of flow and mixing are not affected by turbulence intensity for high Reynolds number situations. It was also found that the mean axial velocity and mean temperature in the axis of the turbulent thermal plasma jet satisfy the self-similarity aspects downstream. In addition, decay constant K is 1.25, which is much smaller than that (5.7–6.1) of the turbulent cold gas jet and has nothing to do with the Reynolds number or turbulence intensity in the jet inlet.
  • [1]
    Fauchais P and Vardelle A 2000 Plasma Phys. Control. Fusion 42 B365
    [2]
    Pfender E 1999 Plasma Chem. Plasma Process. 19 1
    [3]
    An H et al 2018 Fuel Process. Technol. 172 195
    [4]
    Fincke J R et al 2002 Plasma Chem. Plasma Process. 22 105
    [5]
    Fincke J R et al 2002 Ind. Eng. Chem. Res. 41 1425
    [6]
    Kim K S et al 2005 IEEE Trans. Plasma Sci. 33 813
    [7]
    Li J et al 2003 Plasma Sci. Technol. 5 1815
    [8]
    Cheng K et al 2006 Plasma Chem. Plasma Process. 26 211
    [9]
    Williamson R L et al 2003 Int. J. Heat Mass Transfer 46 4215
    [10]
    Cheng K and Chen X 2004 Int. J. Heat Mass Transfer 47 5139
    [11]
    Ramshaw J D and Chang C H 1992 Plasma Chem. Plasma Process. 12 299
    [12]
    Fincke J R et al 2003 Int. J. Heat Mass Transfer 46 4201
    [13]
    Xu D Y and Chen X 2005 Int. Commun. Heat Mass Transfer 32 939
    [14]
    Xu D Y, Chen X and Pan W X 2005 Int. J. Heat Mass Transfer 48 3253
    [15]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
    [16]
    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922
    [17]
    Murphy A B 1995 Plasma Chem. Plasma Process. 15 279
    [18]
    Pan W X et al 2001 Plasma Chem. Plasma Process. 21 23
    [19]
    Ye R B, Proulx P and Boulos M I 1999 Int. J. Heat Mass Transfer 42 1585
    [20]
    Huang P C, Hebeylein J and Pfender E 1995 Plasma Chem.Plasma Process. 15 25
    [21]
    Marchand C et al 2007 J. Therm. Spray Technol. 16 705
    [22]
    Shigeta M 2016 J. Phys. D: Appl. Phys. 49 493001
    [23]
    Shigeta M 2013 J. Phys. D: Appl. Phys. 46 015401
    [24]
    Shigeta M 2012 Plasma Sources Sci. Technol. 21 055029
    [25]
    Shigeta M 2019 IEEJ Trans. Electr. Electron. Eng. 14 16
    [26]
    Colombo V et al 2011 IEEE Trans. Plasma Sci. 39 2894
    [27]
    Smagorinsky J 1963 Mon. Weather Rev. 91 99
    [28]
    Jasak H, Jemcov A and Tukovic Z 2007 OpenFOAM: A C++ library for complex physics simulations Int. Workshop on Coupled Methods in Numerical Dynamics (Dubrovnik,Croatia) (IUC) p 1
    [29]
    Dilawari A H et al 1990 Plasma Chem. Plasma Process.10 321
    [30]
    Chang C H and Ramshaw J D 1993 Plasma Chem. Plasma Process. 13 189
    [31]
    Patankar S V and Spalding D B 1972 Int. J. Heat Mass Transfer 15 1787
    [32]
    Issa R I 1986 J. Comput. Phys. 62 40
    [33]
    Hunt J C R, Wray A A and Moin P 1988 Eddies, streams, and convergence zones in turbulent flows Proc. of the Summer Program 1988 N89–24555
    [34]
    Pfender E, Fincke J and Spores R 1991 Plasma Chem. Plasma Process. 11 529
    [35]
    Boersma B J, Brethouwer G and Nieuwstadt F T M 1998 Phys.Fluids 10 899
    [36]
    Mi J and Nathan G J 2001 J. Fluid Mech. 432 91
    [37]
    Burattini P, Antonia R A and Danaila L 2005 Phys. Fluids 17 025101
    [38]
    Ball C G, Fellouah H and Pollard A 2012 Prog. Aeosp. Sci.50 1
    [39]
    Wang P et al 2008 Int. J. Heat Fluid Flow 29 654
  • Related Articles

    [1]Tatiana HABIB, José Mauricio A. CAIUT, Bruno CAILLIER. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ ions and a capping agent[J]. Plasma Science and Technology, 2024, 26(7): 075505. DOI: 10.1088/2058-6272/ad3499
    [2]Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008
    [3]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [4]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [5]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [6]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [7]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [8]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [9]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [10]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09

Catalog

    Article views (132) PDF downloads (122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return