Advanced Search+
Yu ZHU (朱瑜), Pingwei ZHOU (周平伟), Shengfu LI (李生福). Evaluation of gases' molecular abundance ratio by fiber-optic laser-induced breakdown spectroscopy with a metal-assisted method[J]. Plasma Science and Technology, 2021, 23(12): 125506. DOI: 10.1088/2058-6272/ac2483
Citation: Yu ZHU (朱瑜), Pingwei ZHOU (周平伟), Shengfu LI (李生福). Evaluation of gases' molecular abundance ratio by fiber-optic laser-induced breakdown spectroscopy with a metal-assisted method[J]. Plasma Science and Technology, 2021, 23(12): 125506. DOI: 10.1088/2058-6272/ac2483

Evaluation of gases' molecular abundance ratio by fiber-optic laser-induced breakdown spectroscopy with a metal-assisted method

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFC1200400), the Development Fund of Institute of Fluid Physics, China Academy of Engineering Physics (No. SFZ20150302).
More Information
  • Received Date: March 06, 2021
  • Revised Date: September 04, 2021
  • Accepted Date: September 06, 2021
  • A metal-assisted method is proposed for the evaluation of gases’ molecular abundance ratio in fiber-optic laser-induced breakdown spectroscopy (FO-LIBS). This method can reduce the laser ablation energy and make gas composition identification possible. The principle comes from the collision between the detected gases and the plasma produced by the laser ablation of the metal substrate. The interparticle collision in the plasma plume leads to gas molecules dissociating and sparking, which can be used to determine the gas composition. The quantitative relationship between spectral line intensity and molecular abundance ratio was developed over a large molecular abundance ratio range. The influence of laser ablation energy and substrate material on gas quantitative calibration measurement is also analyzed. The proposed metal-assisted method makes the measurement of gases’ molecular abundance ratios possible with an FO-LIBS system.
  • [1]
    Aragón C and Aguilera J A 2008 Spectrochim. Acta B: At.Spectrosc. 63 893
    [2]
    Capitelli M et al 2004 Spectrochim. Acta B: At. Spectrosc.59 271
    [3]
    Cremers D A and Radziemski L J 2006 Handbook of LaserInduced Breakdown Spectroscopy 2nd edn (Chichester:Wiley)
    [4]
    Harmon R S et al 2009 Appl. Geochem. 24 1125
    [5]
    Gondal M A et al 2009 J. Hazard. Mater. 163 1265
    [6]
    Hussain T and Gondal M A 2008 Environ. Monit. Assess.136 391
    [7]
    Baudelet M et al 2006 J. Appl. Phys. 99 084701
    [8]
    Kim T et al 2004 J. Phys. Chem. B 108 5477
    [9]
    Rodriguez-Celis E M et al 2008 Anal. Biocatal. Chem.391 1961
    [10]
    Wiens R C et al 2012 Space Sci. Rev. 170 167
    [11]
    Cremers D A and Radziemski L J 1987 Laser plasmas for chemical analysis Laser Spectroscopy and Its Applications ed L J Radziemski et al (Boca Raton: CRC Press) 65
    [12]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy:Fundamentals and Applications (Berlin: Springer)
    [13]
    Miziolek A W et al 2006 Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge: Cambridge University Press)
    [14]
    Huang H C et al 2008 Opt. Express 16 16523
    [15]
    Effenberger A J Jr and Scott J R 2010 Sensors 10 4907
    [16]
    Xu H L et al 2015 Laser Photonics Rev. 9 275
    [17]
    Haisch C et al 1996 Fresenius J. Anal. Chem. 356 21
    [18]
    Tran M et al 2001 Appl. Spectrosc. 55 1455
    [19]
    Casini M et al 1991 Laser Part. Beams 9 633
    [20]
    D’Ulivo A et al 2006 Spectrochim. Acta B: At. Spectrosc.61 797
    [21]
    Ferioli F et al 2006 Int. J. Eng. Res. 7 6
    [22]
    Ferioli F and Buckley S G 2006 Combust. Flame 144 435
    [23]
    Kobayashi K et al 2016 J. Phys. D: Appl. Phys. 49 155201
    [24]
    Stavropoulos P et al 2005 Spectrochim. Acta B: At. Spectrosc.60 1092
    [25]
    Theriault G A et al 1998 Field Anal. Chem. Technol. 2 117
    [26]
    Saeki M et al 2014 J. Nucl. Sci. Technol. 51 930
    [27]
    Zeng Q D et al 2015 J. Anal. At. Spectrom. 30 403
    [28]
    Wu J et al 2019 J. Phys. D: Appl. Phys. 52 014006
    [29]
    Zeng Q D et al 2019 Plasma Sci. Technol. 21 034006
    [30]
    Xiao X et al 2018 Spectrochim. Acta B: At. Spectrosc. 141 44
    [31]
    Cosmin E, Puzinauskas P V and Olcmen S 2008 Appl. Opt.47 G88
    [32]
    Aguirre M A et al 2013 Spectrochim. Acta B: At. Spectrosc.9–80 88
    [33]
    Wachter J R and Cremers D A 1987 Appl. Spectrosc. 41 1042
    [34]
    Yang X Y et al 2016 Opt. Express 24 13410
    [35]
    Wang X et al 2014 J. Anal. At. Spectrom. 29 1098
    [36]
    Porneala C and Willis D A 2006 Appl. Phys. Lett. 89 211121
    [37]
    Su L et al 2015 Quantitative measurements of electron number density and threshold for laser induced breakdown in air 46th AIAA Plasmadynamics and Lasers Conf. (Dallas)(AIAA) 2964
    [38]
    Singh M and Sarkar A 2019 Pramana 93 2
    [39]
    Shah S K H et al 2020 Radiat. Phys. Chem. 170 108666
    [40]
    Cabalín L M and Laserna J J 1998 Spectrochim. Acta B: At.Spectrosc. 53 723
  • Related Articles

    [1]Qing LI, Guanghui ZHU, Baoming REN, Jiacheng YING, Zhida YANG, Xuan SUN. Experimental studies of cusp stabilization in Keda Mirror with AXisymmetricity (KMAX)[J]. Plasma Science and Technology, 2023, 25(2): 025102. DOI: 10.1088/2058-6272/ac8e45
    [2]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [3]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [4]PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), DU Tengfei (杜腾飞), HU Zhimeng (胡志猛), GE Lijian (葛理健), CHEN Jinxiang (陈金象), LI Xiangqing (李湘庆), FAN Tieshuan (樊铁栓). Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(1): 23-29. DOI: 10.1088/1009-0630/18/1/05
    [5]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [6]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
    [7]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [8]JI Xiang (戢翔), SONG Yuntao (宋云涛), WU Songtao(武松涛), WANG Zhibin(王志滨), SHEN Guang (沈光), LIU Xufeng (刘旭峰), CAO Lei (曹磊), ZHOU zibo (周自波), PENG Xuebing(彭学兵), WANG Chenghao(王成昊). Electromagnetic Modeling of the Passive Stabilization Loop at EAST[J]. Plasma Science and Technology, 2012, 14(9): 855-858. DOI: 10.1088/1009-0630/14/9/16
    [9]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [10]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
  • Cited by

    Periodical cited type(15)

    1. Du, S., Cheng, X., Ge, G. et al. AC breakdown and decomposition products detection characteristics of eco-friendly insulating medium in gas insulated switchgear. Scientific Reports, 2024, 14(1): 19491. DOI:10.1038/s41598-024-70106-1
    2. Tian, S., Li, X., Zhang, Y. et al. Partial-Discharge-Induced Decomposition and By-Products Properties of Eco-Friendly Insulating Gas HFO-1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(3): 1447-1454. DOI:10.1109/TDEI.2023.3344691
    3. Lin, L., Qiang, C., Chen, Q. et al. Breakdown characteristics of HFO1234ze(E)/N2 gas mixture in non-uniform electric field under lightning impulse voltage. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 978. DOI:10.1007/s10854-024-12599-0
    4. Zhang, X., Xiao, S., Zhang, B. et al. Challenges and Prospects for the Research of Environmentally Friendly Insulating Gases and Applications of Power Equipment Under Control Policies of PFAS and Fluorine Gas | [PFAS 及含氟气体管控下环保绝缘气体研究与电力装备应用展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44(1): 362-376. DOI:10.13334/j.0258-8013.pcsee.231579
    5. Ye, Y., Hao, Y., Guo, M. et al. Theoretical Assessment of the Interaction Mechanism Between Hydrofluoroolefins and Metal Electrodes in the Presence of Discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2494-2502. DOI:10.1109/TDEI.2024.3394407
    6. Cui, Z., Li, Y., Xiao, S. et al. Recent progresses, challenges and proposals on SF6 emission reduction approaches. Science of the Total Environment, 2024. DOI:10.1016/j.scitotenv.2023.167347
    7. Zhang, B., Wang, S., Chen, L. et al. Influence of oxygen on solid carbon formation during arcing of eco-friendly SF6-alternative gases. Journal of Physics D: Applied Physics, 2023, 56(36): 365502. DOI:10.1088/1361-6463/acd64e
    8. Li, Y., Wang, Y., Xiao, S. et al. Partial discharge induced decomposition and by-products generation properties of HFO-1234ze(E)/CO2: a new eco-friendly gas insulating medium. Journal of Physics D: Applied Physics, 2023, 56(16): 165203. DOI:10.1088/1361-6463/acc03f
    9. Lin, L., Chen, Q., Wang, X. Power Frequency Breakdown Characteristics of HFO/N Gas Mixtures under an Extremely Nonuniform Electric Field. IEEE Transactions on Plasma Science, 2022, 50(10): 3725-3731. DOI:10.1109/TPS.2022.3200514
    10. Tian, S., Li, X., Chen, K. et al. Effect of External Electric Fields on the Structure and Properties of HFOă1234ze(E) | [外电场对 HFOă1234ze(E)分子的结构和性质的影响]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(7): 2650-2658. DOI:10.13336/j.1003-6520.hve.20220392
    11. Gan, H., Wang, F., Zhong, L. et al. Theoretical study of the discharge decomposition mechanism of environment-friendly insulation gas HFO-1234ze(E) in the presence of trace water. Journal of Physics: Conference Series, 2022, 2221(1): 012024. DOI:10.1088/1742-6596/2221/1/012024
    12. Xiao, S., Han, P., Li, Y. et al. Insulation Performance and Electrical Field Sensitivity Properties of HFO-1336mzz(E)/CO2: A New Eco-friendly Gas Insulating Medium. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 1938-1948. DOI:10.1109/TDEI.2021.009720
    13. Ranjan, P., Chen, L., Alabani, A. et al. Anomalous First Breakdown Behavior for HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1620-1627. DOI:10.1109/TDEI.2021.009676
    14. Liu, H., Li, Q., Wang, J. et al. Inhibition Effect of Solid Products and DC Breakdown Characteristics of the HFO1234Ze(E)-N2-O2 Ternary Gas Mixture. ACS Omega, 2021, 6(36): 23281-23292. DOI:10.1021/acsomega.1c03020
    15. Li, L., Han, P., Yao, Q. et al. RESEARCH ON THE POWER FREQUENCY BREAKDOWN CHARACTERISTICS OF A NEW ECO-FRIENDLY GAS INSULATING MEDIUM HFO-1336mzz(E). IET Conference Proceedings, 2021, 2021(15): 1925-1928. DOI:10.1049/icp.2022.0449

    Other cited types(0)

Catalog

    Article views (87) PDF downloads (57) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return