Citation: | Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d |
The study of the interaction between ion beam and plasma is very important to the areas of inertial fusion energy and high energy density physics. With detailed one-dimensional electromagnetic particle-in-cell simulations, we investigate here the interaction of a laser-accelerated proton beam assuming an ideal monoenergetic beam with a gas-discharge plasma. After the saturation stage of the two-stream instability excited by the proton beam, significant high energy electrons are observed, with maximum energy approaching 2 MeV, and a new two-stream instability occurs between the high energy electrons and background electrons. The trajectories of plasma electrons are studied, showing the process of electron trapping and de-trapping from the wakefield.
This work is supported by National Natural Science Foundation of China (Nos. 12075046 and 11775042).
[1] |
Patel P K et al 2003 Phys. Rev. Lett. 91 125004 doi: 10.1103/PhysRevLett.91.125004
|
[2] |
Li C K et al 2006 Phys. Rev. Lett. 97 135003 doi: 10.1103/PhysRevLett.97.135003
|
[3] |
Wilson R R 1946 Radiology 47 487 doi: 10.1148/47.5.487
|
[4] |
Tabak M et al 1994 Phys. Plasmas 1 1626 doi: 10.1063/1.870664
|
[5] |
Roth M et al 2001 Phys. Rev. Lett. 86 436 doi: 10.1103/PhysRevLett.86.436
|
[6] |
Kim J et al 2015 Phys. Rev. Lett. 115 054801 doi: 10.1103/PhysRevLett.115.054801
|
[7] |
Chen P et al 1987 IEEE Trans. Plasma Sci. 15 218 doi: 10.1109/TPS.1987.4316688
|
[8] |
Tokluoglu E K et al 2018 Phys. Plasmas 25 052122 doi: 10.1063/1.5038878
|
[9] |
Roberts K V and Berk H L 1967 Phys. Rev. Lett. 19 297 doi: 10.1103/PhysRevLett.19.297
|
[10] |
Ren J R et al 2020 Nat. Commun. 11 5157 doi: 10.1038/s41467-020-18986-5
|
[11] |
Davidson R C et al 2004 Phys. Rev. ST Accel. Beams 7 114801 doi: 10.1103/PhysRevSTAB.7.114801
|
[12] |
Tokluoglu E and Kaganovich I D 2015 Phys. Plasmas 22 040701 doi: 10.1063/1.4917245
|
[13] |
Hara K, Kaganovich I D and Startsev E A 2018 Phys. Plasmas 25 011609 doi: 10.1063/1.5002688
|
[14] |
Cheng R et al 2021 Phys. Rev. E 103 063216 doi: 10.1103/PhysRevE.103.063216
|
[15] |
Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751 doi: 10.1103/RevModPhys.85.751
|
[16] |
Snavely R A et al 2000 Phys. Rev. Lett. 85 2945 doi: 10.1103/PhysRevLett.85.2945
|
[17] |
Polz J et al 2019 Sci. Rep. 9 16534 doi: 10.1038/s41598-019-52919-7
|
[18] |
Ramakrishna B et al 2020 Matter Radiat. Extremes 5 045402 doi: 10.1063/5.0004801
|
[19] |
Batani D et al 2018 Phys. Plasmas 25 054506 doi: 10.1063/1.5029854
|
[20] |
Kumar S, Gopal K and Gupta D N 2019 Plasma Phys. Control. Fusion 61 085001 doi: 10.1088/1361-6587/ab216e
|
[21] |
Kim I J et al 2016 Phys. Plasmas 23 070701 doi: 10.1063/1.4958654
|
[22] |
Wagner F et al 2016 Phys. Rev. Lett. 116 205002 doi: 10.1103/PhysRevLett.116.205002
|
[23] |
Higginson A et al 2018 Nat. Commun. 9 724 doi: 10.1038/s41467-018-03063-9
|
[24] |
Shen B F et al 2009 Phys. Rev. ST Accel. Beams 12 121301 doi: 10.1103/PhysRevSTAB.12.121301
|
[25] |
Zhang X M et al 2010 Phys. Plasmas 17 123102 doi: 10.1063/1.3518762
|
[26] |
Li S et al 2018 Phys. Plasmas 25 023111 doi: 10.1063/1.5020713
|
[27] |
Huang H et al 2021 Matter Radiat. Extremes 6 044401 doi: 10.1063/5.0029163
|
[28] |
Xue K et al 2020 Matter Radiat. Extremes 5 054402 doi: 10.1063/5.0007734
|
[29] |
Raffestin D et al 2021 Matter Radiat. Extremes 6 056901 doi: 10.1063/5.0046679
|
[30] |
Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001 doi: 10.1088/0741-3335/57/11/113001
|
[31] |
Belyaev G et al 1996 Phys. Rev. E 53 2701 doi: 10.1103/PhysRevE.53.2701
|
[32] |
Zhao Y T et al 2021 Phys. Rev. Lett. 126 115001 doi: 10.1103/PhysRevLett.126.115001
|
[33] |
Startsev E A, Kaganovich I D and Davidson R C 2014 Nucl. Instrum. Methods Phys. Res. A 733 80 doi: 10.1016/j.nima.2013.05.090
|
[1] | Feng WANG, Jiquan LI, Hongpeng QU, Xiaodong PENG. Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode[J]. Plasma Science and Technology, 2024, 26(1): 015103. DOI: 10.1088/2058-6272/ad0d57 |
[2] | Bei LIU, Hua LIANG, Borui ZHENG. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2023, 25(1): 015503. DOI: 10.1088/2058-6272/ac7cb8 |
[3] | Chaoxing DAI (戴超星), Chao SONG (宋超), Xue GUO (郭雪), Wentao SUN (孙文涛), Zhiqiang GUO (郭志强), Fucheng LIU (刘富成), Yafeng HE (贺亚峰). Rotation of dust vortex in a metal saw structure in dusty plasma[J]. Plasma Science and Technology, 2020, 22(3): 34008-034008. DOI: 10.1088/2058-6272/ab580b |
[4] | Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0 |
[5] | Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95 |
[6] | Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504 |
[7] | R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10 |
[8] | LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21 |
[9] | ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08 |
[10] | ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13 |
1. | Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0 |
2. | Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476 |
3. | Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174 |
4. | ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003 |
5. | Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003 |