Advanced Search+
Yingwei GAO, Zongbiao YE, Jianxing LIU, Hengxin GUO, Shuwei CHEN, Bo CHEN, Jianjun CHEN, Hongbin WANG, Fujun GOU. Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma[J]. Plasma Science and Technology, 2022, 24(11): 115601. DOI: 10.1088/2058-6272/ac770c
Citation: Yingwei GAO, Zongbiao YE, Jianxing LIU, Hengxin GUO, Shuwei CHEN, Bo CHEN, Jianjun CHEN, Hongbin WANG, Fujun GOU. Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma[J]. Plasma Science and Technology, 2022, 24(11): 115601. DOI: 10.1088/2058-6272/ac770c

Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma

More Information
  • Corresponding author:

    Zongbiao YE, E-mail: zbye@scu.edu.cn

    Fujun GOU, E-mail: gfujun@scu.edu.cn

  • Received Date: November 27, 2021
  • Revised Date: June 05, 2022
  • Accepted Date: June 07, 2022
  • Available Online: December 05, 2023
  • Published Date: August 21, 2022
  • This study examined the effects of plasma irradiation on an unwetted liquid lithium-based capillary porous system (Li-CPS). The Li-CPS was irradiated with high-density Ar plasma using a linear plasma device at Sichuan University for Plasma Surface Interaction. The high-speed camera, Langmuir probe, and multi-channel spectrometer were used to characterize the effects of plasma irradiation. Upon Ar plasma irradiation, liquid Li drops were formed on the surface of the unwetted Li-CPS. Immediately after this irradiation, the drops fractured and were ejected into the plasma within ~20 ms scale, which is not observed before to the best of our knowledge. Related results showed that the ejection behavior of Li could effectively cool electron temperature and reduce incident heat flux by ~30% and correspondingly matrix temperature ~150 ℃, revealing an enhanced vapor shielding effect. The involved internal mechanism and physical processes deserve further investigations.

  • This work is supported by National Natural Science Foundation of China (Nos. 11875198 and 11905151), China Postdoctoral Science Foundation (No. 2019M663487), Sichuan Science and Technology Program (Nos. 2021YJ0510 and 2021YFSY0015).

  • [1]
    Coenen J W et al 2014 Phys. Scr. T159 014037 doi: 10.1088/0031-8949/2014/T159/014037
    [2]
    Morgan T W et al 2018 Plasma Phys. Control. Fusion 60 014025 doi: 10.1088/1361-6587/aa86cd
    [3]
    Khripunov B I et al 2003 Fusion Eng. Des. 65 449 doi: 10.1016/S0920-3796(03)00017-6
    [4]
    Boyle D P et al 2017 Phys. Rev. Lett. 119 015001 doi: 10.1103/PhysRevLett.119.015001
    [5]
    Ding R et al 2013 J. Nucl. Mater. 438 S690 doi: 10.1016/j.jnucmat.2013.01.146
    [6]
    Zharkov M Y et al 2018 Plasma Phys. Rep. 44 631 doi: 10.1134/S1063780X18070103
    [7]
    Canik J M et al 2013 Nucl. Fusion 53 113016 doi: 10.1088/0029-5515/53/11/113016
    [8]
    Hu J S et al 2016 Nucl. Fusion 56 046011 doi: 10.1088/0029-5515/56/4/046011
    [9]
    Tabarés F L et al 2018 Nucl. Mater. Energy 17 314 doi: 10.1016/j.nme.2018.11.019
    [10]
    Miloshevsky G V and Hassanein A 2010 Nucl. Fusion 50 115005 doi: 10.1088/0029-5515/50/11/115005
    [11]
    Bühler L et al 2015 Fusion Eng. Des. 100 55 doi: 10.1016/j.fusengdes.2014.03.078
    [12]
    Golubchikov L G et al 1996 J. Nucl. Mater. 233–237 667 doi: 10.1016/S0022-3115(96)00010-4
    [13]
    Pistunovich V I et al 1996 J. Nucl. Mater. 233–237 650 doi: 10.1016/S0022-3115(96)00050-5
    [14]
    Evtikhin V A et al 2002 Plasma Phys. Control. Fusion 44 955 doi: 10.1088/0741-3335/44/6/322
    [15]
    Cao X et al 2019 Nucl. Fusion 59 056015 doi: 10.1088/1741-4326/ab05f0
    [16]
    Tabarés F L et al 2017 Nucl. Fusion 57 016029 doi: 10.1088/0029-5515/57/1/016029
    [17]
    Ye Z B et al 2020 Tungsten 2 94 doi: 10.1007/s42864-020-00044-8
    [18]
    van Eden G G et al 2017 Nat. Commun. 8 192 doi: 10.1038/s41467-017-00288-y
    [19]
    Marenkov E and Pshenov A 2020 Nucl. Fusion 60 026011 doi: 10.1088/1741-4326/ab5eb5
    [20]
    Morgan T W, van den Bekerom D C M and De Temmerman G 2015 J. Nucl. Mater. 463 1256 doi: 10.1016/j.jnucmat.2014.11.085
    [21]
    Meng X C et al 2015 Acta Phys. Sin. 64 212801 (in Chinese) doi: 10.7498/aps.64.212801
    [22]
    Rindt P et al 2021 Nucl. Fusion 61 066026 doi: 10.1088/1741-4326/abf854
    [23]
    Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q. 23 309 doi: 10.1179/cmq.1984.23.3.309
    [24]
    Van Eden G G et al 2016 Phys. Rev. Lett. 116 135002 doi: 10.1103/PhysRevLett.116.135002
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Figures(7)

    Article views (73) PDF downloads (86) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return