Citation: | Yingwei GAO, Zongbiao YE, Jianxing LIU, Hengxin GUO, Shuwei CHEN, Bo CHEN, Jianjun CHEN, Hongbin WANG, Fujun GOU. Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma[J]. Plasma Science and Technology, 2022, 24(11): 115601. DOI: 10.1088/2058-6272/ac770c |
This study examined the effects of plasma irradiation on an unwetted liquid lithium-based capillary porous system (Li-CPS). The Li-CPS was irradiated with high-density Ar plasma using a linear plasma device at Sichuan University for Plasma Surface Interaction. The high-speed camera, Langmuir probe, and multi-channel spectrometer were used to characterize the effects of plasma irradiation. Upon Ar plasma irradiation, liquid Li drops were formed on the surface of the unwetted Li-CPS. Immediately after this irradiation, the drops fractured and were ejected into the plasma within ~20 ms scale, which is not observed before to the best of our knowledge. Related results showed that the ejection behavior of Li could effectively cool electron temperature and reduce incident heat flux by ~30% and correspondingly matrix temperature ~150 ℃, revealing an enhanced vapor shielding effect. The involved internal mechanism and physical processes deserve further investigations.
This work is supported by National Natural Science Foundation of China (Nos. 11875198 and 11905151), China Postdoctoral Science Foundation (No. 2019M663487), Sichuan Science and Technology Program (Nos. 2021YJ0510 and 2021YFSY0015).
[1] |
Coenen J W et al 2014 Phys. Scr. T159 014037 doi: 10.1088/0031-8949/2014/T159/014037
|
[2] |
Morgan T W et al 2018 Plasma Phys. Control. Fusion 60 014025 doi: 10.1088/1361-6587/aa86cd
|
[3] |
Khripunov B I et al 2003 Fusion Eng. Des. 65 449 doi: 10.1016/S0920-3796(03)00017-6
|
[4] |
Boyle D P et al 2017 Phys. Rev. Lett. 119 015001 doi: 10.1103/PhysRevLett.119.015001
|
[5] |
Ding R et al 2013 J. Nucl. Mater. 438 S690 doi: 10.1016/j.jnucmat.2013.01.146
|
[6] |
Zharkov M Y et al 2018 Plasma Phys. Rep. 44 631 doi: 10.1134/S1063780X18070103
|
[7] |
Canik J M et al 2013 Nucl. Fusion 53 113016 doi: 10.1088/0029-5515/53/11/113016
|
[8] |
Hu J S et al 2016 Nucl. Fusion 56 046011 doi: 10.1088/0029-5515/56/4/046011
|
[9] |
Tabarés F L et al 2018 Nucl. Mater. Energy 17 314 doi: 10.1016/j.nme.2018.11.019
|
[10] |
Miloshevsky G V and Hassanein A 2010 Nucl. Fusion 50 115005 doi: 10.1088/0029-5515/50/11/115005
|
[11] |
Bühler L et al 2015 Fusion Eng. Des. 100 55 doi: 10.1016/j.fusengdes.2014.03.078
|
[12] |
Golubchikov L G et al 1996 J. Nucl. Mater. 233–237 667 doi: 10.1016/S0022-3115(96)00010-4
|
[13] |
Pistunovich V I et al 1996 J. Nucl. Mater. 233–237 650 doi: 10.1016/S0022-3115(96)00050-5
|
[14] |
Evtikhin V A et al 2002 Plasma Phys. Control. Fusion 44 955 doi: 10.1088/0741-3335/44/6/322
|
[15] |
Cao X et al 2019 Nucl. Fusion 59 056015 doi: 10.1088/1741-4326/ab05f0
|
[16] |
Tabarés F L et al 2017 Nucl. Fusion 57 016029 doi: 10.1088/0029-5515/57/1/016029
|
[17] |
Ye Z B et al 2020 Tungsten 2 94 doi: 10.1007/s42864-020-00044-8
|
[18] |
van Eden G G et al 2017 Nat. Commun. 8 192 doi: 10.1038/s41467-017-00288-y
|
[19] |
Marenkov E and Pshenov A 2020 Nucl. Fusion 60 026011 doi: 10.1088/1741-4326/ab5eb5
|
[20] |
Morgan T W, van den Bekerom D C M and De Temmerman G 2015 J. Nucl. Mater. 463 1256 doi: 10.1016/j.jnucmat.2014.11.085
|
[21] |
Meng X C et al 2015 Acta Phys. Sin. 64 212801 (in Chinese) doi: 10.7498/aps.64.212801
|
[22] |
Rindt P et al 2021 Nucl. Fusion 61 066026 doi: 10.1088/1741-4326/abf854
|
[23] |
Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q. 23 309 doi: 10.1179/cmq.1984.23.3.309
|
[24] |
Van Eden G G et al 2016 Phys. Rev. Lett. 116 135002 doi: 10.1103/PhysRevLett.116.135002
|
[1] | Rendeng Tang, Jianxing Liu, Hengxin Guo, Congcong Yuan, Xiaoxuan Huang, Zhengdong Li, Zongbiao Ye, Jianjun Wei, Fujun Gou. Profile studies of lithium vapor under high-density plasma irradiation using embedded multichannel capillary porous[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc185 |
[2] | Yun LING, Dong DAI, Jiaxin CHANG, Buang WANG. Effect of liquid surface depression size on discharge characteristics and chemical distribution in the plasma-liquid anode system[J]. Plasma Science and Technology, 2024, 26(9): 094002. DOI: 10.1088/2058-6272/ad2b38 |
[3] | Chenglong LI, Guizhong ZUO, R MANIGI, K TRITZ, D ANDRUCZYK, Bin ZHANG, Ruirong LIANG, D OLIVER, Zhen SUN, Wei XU, Xiancai MENG, Ming HUANG, Zhongliang TANG, Binfu GAO, Ning YAN, Jiansheng HU. Evidence of vapor shielding effect on heat flux loaded on flowing liquid lithium limiter in EAST[J]. Plasma Science and Technology, 2022, 24(9): 095104. DOI: 10.1088/2058-6272/ac6650 |
[4] | A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503 |
[5] | JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15 |
[6] | WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07 |
[7] | LIU Ping (刘平), HAI Ran (海然), WU Ding (吴鼎), XIAO Qingmei (肖青梅), SUN Liying (孙丽影), DING Hongbin (丁洪斌). The Enhanced Effect of Optical Emission from Laser Induced Breakdown Spectroscopy of an Al-Li Alloy in the Presence of Magnetic Field Confinement[J]. Plasma Science and Technology, 2015, 17(8): 687-692. DOI: 10.1088/1009-0630/17/8/13 |
[8] | XIA Zhiwei(夏志伟), LI Wei(李伟), LI Bo(李波), YANG Qingwei(杨青巍), LU Jie(卢杰). High Magnetic Field Shielding for Sensitive Devices Relevant to ITER[J]. Plasma Science and Technology, 2014, 16(6): 629-632. DOI: 10.1088/1009-0630/16/6/17 |
[9] | LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09 |
[10] | ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04 |
1. | Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0 |
2. | Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476 |
3. | Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174 |
4. | ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003 |
5. | Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003 |