Citation: | Ting WU, Lin NIE, Yi YU, Jinming GAO, Junyan LI, Huicong MA, Jie WEN, Rui KE, Na WU, Zhihui HUANG, Liang LIU, Dianlin ZHENG, Kaiyang YI, Xiaoyan GAO, Weice WANG, Jun CHENG, Longwen YAN, Laizhong CAI, Zhanhui WANG, Min XU. Evolution of edge turbulent transport induced by L-mode detachment in the HL-2A tokamak[J]. Plasma Science and Technology, 2023, 25(1): 015102. DOI: 10.1088/2058-6272/ac82df |
This paper presents the characteristics of L-mode detachment, together with the behavior of edge turbulent transport and plasma confinement on the HL-2A tokamak. Partially detached and pronounced detached states have been achieved in L-mode plasma. Stored energy was maintained before and after detachment. Edge turbulence and its transport have increased obviously in the partially detached state. In the pronounced detached state, redistribution of the density and temperature profiles due to detachment leads to low amplitude of electron temperature and pressure, as well as very weak edge turbulence and transport. Despite strong plasma radiation in the pronounced detached state, reduced edge turbulent transport contributes to maintaining stored energy in detached L-mode plasma in HL-2A. Different detachment states play an important role in the redistribution of density and temperature profiles, which requires further study.
This work is supported by National Key Research and Development Program of China (Nos. 2018YFE0303102, 2018YFE0309103, 2017YFE0300405 and 2017YFE0301203), National Natural Science Foundation of China (Nos. U1867222, 11875124, 11905051, 11805055 and 11875020) and the Sichuan Youth Science and Technology Innovation Team Project (No. 2020JDTD0030).
[1] |
ITER Physics Basis Editors 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
|
[2] |
Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing)
|
[3] |
Giroud C et al 2012 Nucl. Fusion 52 063022 doi: 10.1088/0029-5515/52/6/063022
|
[4] |
Kallenbach A et al 2015 Nucl. Fusion 55 053026 doi: 10.1088/0029-5515/55/5/053026
|
[5] |
Maddison G P et al 2014 Nucl. Fusion 54 073016 doi: 10.1088/0029-5515/54/7/073016
|
[6] |
Liu J B et al 2019 Nucl. Fusion 59 126046 doi: 10.1088/1741-4326/ab4639
|
[7] |
Wang H Q et al 2018 Nucl. Fusion 58 096014 doi: 10.1088/1741-4326/aacbde
|
[8] |
Wang L et al 2021 Nat. Commun. 12 1365 doi: 10.1038/s41467-021-21645-y
|
[9] |
Moser A L et al 2020 Phys. Plasmas 27 032506 doi: 10.1063/1.5109027
|
[10] |
Gao J M et al 2021 Nucl. Fusion 61 066024 doi: 10.1088/1741-4326/abf440
|
[11] |
Fable E et al 2022 Nucl. Fusion 62 024001 doi: 10.1088/1741-4326/ac3e81
|
[12] |
Nikolaeva V et al 2018 Plasma Phys. Control. Fusion 60 055009 doi: 10.1088/1361-6587/aab4c5
|
[13] |
Xu M et al 2019 Nucl. Fusion 59 112017 doi: 10.1088/1741-4326/ab1d84
|
[14] |
Liu L et al 2019 Fusion Eng. Des. 143 41 doi: 10.1016/j.fusengdes.2019.03.095
|
[15] |
Zheng D L et al 2018 Plasma Sci. Technol. 20 105103 doi: 10.1088/2058-6272/aacf3d
|
[16] |
Huang Z H et al 2022 Plasma Sci. Technol. 24 054002 doi: 10.1088/2058-6272/ac496c
|
[17] |
Yan L W et al 2005 Rev. Sci. Instrum. 76 093506 doi: 10.1063/1.2052049
|
[18] |
Wen J et al 2021 Rev. Sci. Instrum. 92 063513 doi: 10.1063/5.0043676
|
[19] |
Potzel S et al 2014 Nucl. Fusion 54 013001 doi: 10.1088/0029-5515/54/1/013001
|
[20] |
Guimarais L et al 2018 Nucl. Fusion 58 026005 doi: 10.1088/1741-4326/aa98e8
|
[21] |
Melnikov A V et al 2013 Nucl. Fusion 53 092002 doi: 10.1088/0029-5515/53/9/092002
|
[22] |
Melnikov A V 2019 Electric Potential in Toroidal Plasmas (Berlin: Springer)
|