Citation: | Dingchen LI, Jiawei LI, Chuan LI, Ming ZHANG, Pengyu WANG, Zhi LIU, Yong YANG, Kexun YU. Multi-point discharge model: study on corona discharge of double-ended needle in large space[J]. Plasma Science and Technology, 2023, 25(3): 035402. DOI: 10.1088/2058-6272/ac92cd |
Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However, the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter (25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.
This work is supported by National Natural Science Foundation of China (Nos. 52207158 and 51821005), the Fundamental Research Funds for the Central Universities (HUST: No. 2022JYCXJJ012), and the National Key Research and Development Program of China (Nos. 2016YFC0401002 and 2016YFC0401006).
[1] |
Zhang M et al 2021 J. Phys. D: Appl. Phys. 54 255201 doi: 10.1088/1361-6463/abf0ef
|
[2] |
Kang M S et al 2021 J. Hazard. Mater. 411 125038 doi: 10.1016/j.jhazmat.2021.125038
|
[3] |
Yang Y et al 2021 J. Phys. D: Appl. Phys. 54 175204 doi: 10.1088/1361-6463/abdefd
|
[4] |
Jiang Y et al 2022 Chem. Eng. Sci. 247 117034 doi: 10.1016/j.ces.2021.117034
|
[5] |
Bussiahn R et al 2010 Appl. Phys. Lett. 96 143701 doi: 10.1063/1.3380811
|
[6] |
Hage M et al 2022 Appl. Microbiol. Biotechnol. 106 81 doi: 10.1007/s00253-021-11715-y
|
[7] |
Yang C et al 2021 Chem. Eng. J. 409 128142 doi: 10.1016/j.cej.2020.128142
|
[8] |
Akdoğan E and Şirin H T 2021 Mater. Sci. Eng. C 131 112474 doi: 10.1016/j.msec.2021.112474
|
[9] |
Gao Y T et al 2021 Plasma Process. Polym. 18 2100038 doi: 10.1002/ppap.202100038
|
[10] |
Wartel M et al 2021 J. Appl. Phys. 129 233301 doi: 10.1063/5.0040035
|
[11] |
Choi H Y, Park Y G and Ha M Y 2020 J. Mech. Sci. Technol. 34 3303 doi: 10.1007/s12206-020-0722-2
|
[12] |
Gao W C et al 2020 Powder Technol. 361 238 doi: 10.1016/j.powtec.2019.08.046
|
[13] |
Qu J G et al 2020 Int. J. Heat Mass Transfer 163 120406 doi: 10.1016/j.ijheatmasstransfer.2020.120406
|
[14] |
Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 015007 doi: 10.1088/0963-0252/23/1/015007
|
[15] |
Zhong C S et al 2019 Drying Technol. 37 1665 doi: 10.1080/07373937.2018.1531291
|
[16] |
Liu W Z et al 2020 Plasma Sources Sci. Technol. 29 115011 doi: 10.1088/1361-6595/abb6b4
|
[17] |
Li D C et al 2021 J. Phys. D: Appl. Phys. 54 355202 doi: 10.1088/1361-6463/ac08c8
|
[18] |
Li D C et al 2021 High Voltage 7 429 doi: 10.1049/hve2.12167
|
[19] |
Jiang M et al 2020 Plasma Sources Sci. Technol. 29 015020 doi: 10.1088/1361-6595/ab6755
|
[20] |
Sato Y et al 2020 J. Phys. D: Appl. Phys. 53 265204 doi: 10.1088/1361-6463/ab7df0
|
[21] |
Hasan N et al 2014 Plasma Sources Sci. Technol. 23 035013 doi: 10.1088/0963-0252/23/3/035013
|
[22] |
Sun H Y et al 2019 IEEE Trans. Plasma Sci. 47 736 doi: 10.1109/TPS.2018.2884696
|
[23] |
Chen S, van den Berg R G W and Nijdam S 2018 Plasma Sources Sci. Technol. 27 055021 doi: 10.1088/1361-6595/aabd5f
|
[24] |
Liu K L et al 2015 J. Electr. Eng. Technol. 10 1804 doi: 10.5370/JEET.2015.10.4.1804
|
[25] |
Wang H J 2018 IOP Conf. Ser. : Earth Environ. Sci. 186 012005 doi: 10.1088/1755-1315/186/5/012005
|
[26] |
Chen S, Nobelen J C P Y and Nijdam S 2017 Plasma Sources Sci. Technol. 26 095005 doi: 10.1088/1361-6595/aa86b8
|
[27] |
Shi C A et al 2017 J. Food Eng. 211 39 doi: 10.1016/j.jfoodeng.2017.04.035
|
[28] |
Zhang J F et al 2019 J. Fluids Eng. 141 031105 doi: 10.1115/1.4041391
|
[29] |
Qu J G et al 2021 Appl. Therm. Eng. 193 116946 doi: 10.1016/j.applthermaleng.2021.116946
|
[30] |
Zhang J F et al 2018 J. Fluids Eng. 140 101105 doi: 10.1115/1.4040016
|
[31] |
Li C et al 2020 Plasma Sources Sci. Technol. 29 045011 doi: 10.1088/1361-6595/ab708b
|
[1] | Yanyi Wang, Yining Ge, Yong Chen, Li Wang, Xuandong Liu. Investigation of discharge regimes of silicon needle with short air gap[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ada344 |
[2] | Dingchen LI, Chuan LI, Jiawei LI, Wendi YANG, Menghan XIAO, Ming ZHANG, Kexun YU. Study on the interaction mechanism of double-blade corona discharge with a large discharge gap[J]. Plasma Science and Technology, 2023, 25(4): 045404. DOI: 10.1088/2058-6272/aca460 |
[3] | Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436 |
[4] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[5] | NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09 |
[6] | WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06 |
[7] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[8] | LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05 |
[9] | A. A. AZOOZ, Sabah I. WAYSI. An Alternative Empirical Formula for Positive Corona Discharge I-V Characteristics in Point-to-Plate Electrode Geometry[J]. Plasma Science and Technology, 2014, 16(3): 211-218. DOI: 10.1088/1009-0630/16/3/07 |
[10] | LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10 |
1. | Kadhem, S.J.. Enhancing plasma jet parameters control by external magnetic field strength variation. Optical and Quantum Electronics, 2024, 56(7): 1118. DOI:10.1007/s11082-024-07069-0 |
2. | Hu, J.-C., Chen, Y.-C., Guo, Y.-M. et al. Numerical study of molten salt flow and heat transfer in a pipe applied non-uniform magnetic field. Physics of Fluids, 2024, 36(3): 035115. DOI:10.1063/5.0189476 |
3. | Zhao, Q., Mao, B., Bai, X. et al. Advances in Electrical Conductivity Calculation Method of Thermal Ionization Plasma. 2021. DOI:10.1109/ICMIMT52186.2021.9476174 |
4. | ZHAO, K., MING, M., LI, F. et al. Experimental study on plasma jet deflection and energy extraction with MHD control. Chinese Journal of Aeronautics, 2020, 33(6): 1602-1610. DOI:10.1016/j.cja.2020.01.003 |
5. | Zhao, K., Lu, Y., Li, F. et al. Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronautica, 2020. DOI:10.1016/j.actaastro.2020.03.003 |