Citation: | Dingchen LI, Jiawei LI, Chuan LI, Ming ZHANG, Pengyu WANG, Zhi LIU, Yong YANG, Kexun YU. Multi-point discharge model: study on corona discharge of double-ended needle in large space[J]. Plasma Science and Technology, 2023, 25(3): 035402. DOI: 10.1088/2058-6272/ac92cd |
Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However, the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter (25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.
This work is supported by National Natural Science Foundation of China (Nos. 52207158 and 51821005), the Fundamental Research Funds for the Central Universities (HUST: No. 2022JYCXJJ012), and the National Key Research and Development Program of China (Nos. 2016YFC0401002 and 2016YFC0401006).
[1] |
Zhang M et al 2021 J. Phys. D: Appl. Phys. 54 255201 doi: 10.1088/1361-6463/abf0ef
|
[2] |
Kang M S et al 2021 J. Hazard. Mater. 411 125038 doi: 10.1016/j.jhazmat.2021.125038
|
[3] |
Yang Y et al 2021 J. Phys. D: Appl. Phys. 54 175204 doi: 10.1088/1361-6463/abdefd
|
[4] |
Jiang Y et al 2022 Chem. Eng. Sci. 247 117034 doi: 10.1016/j.ces.2021.117034
|
[5] |
Bussiahn R et al 2010 Appl. Phys. Lett. 96 143701 doi: 10.1063/1.3380811
|
[6] |
Hage M et al 2022 Appl. Microbiol. Biotechnol. 106 81 doi: 10.1007/s00253-021-11715-y
|
[7] |
Yang C et al 2021 Chem. Eng. J. 409 128142 doi: 10.1016/j.cej.2020.128142
|
[8] |
Akdoğan E and Şirin H T 2021 Mater. Sci. Eng. C 131 112474 doi: 10.1016/j.msec.2021.112474
|
[9] |
Gao Y T et al 2021 Plasma Process. Polym. 18 2100038 doi: 10.1002/ppap.202100038
|
[10] |
Wartel M et al 2021 J. Appl. Phys. 129 233301 doi: 10.1063/5.0040035
|
[11] |
Choi H Y, Park Y G and Ha M Y 2020 J. Mech. Sci. Technol. 34 3303 doi: 10.1007/s12206-020-0722-2
|
[12] |
Gao W C et al 2020 Powder Technol. 361 238 doi: 10.1016/j.powtec.2019.08.046
|
[13] |
Qu J G et al 2020 Int. J. Heat Mass Transfer 163 120406 doi: 10.1016/j.ijheatmasstransfer.2020.120406
|
[14] |
Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 015007 doi: 10.1088/0963-0252/23/1/015007
|
[15] |
Zhong C S et al 2019 Drying Technol. 37 1665 doi: 10.1080/07373937.2018.1531291
|
[16] |
Liu W Z et al 2020 Plasma Sources Sci. Technol. 29 115011 doi: 10.1088/1361-6595/abb6b4
|
[17] |
Li D C et al 2021 J. Phys. D: Appl. Phys. 54 355202 doi: 10.1088/1361-6463/ac08c8
|
[18] |
Li D C et al 2021 High Voltage 7 429 doi: 10.1049/hve2.12167
|
[19] |
Jiang M et al 2020 Plasma Sources Sci. Technol. 29 015020 doi: 10.1088/1361-6595/ab6755
|
[20] |
Sato Y et al 2020 J. Phys. D: Appl. Phys. 53 265204 doi: 10.1088/1361-6463/ab7df0
|
[21] |
Hasan N et al 2014 Plasma Sources Sci. Technol. 23 035013 doi: 10.1088/0963-0252/23/3/035013
|
[22] |
Sun H Y et al 2019 IEEE Trans. Plasma Sci. 47 736 doi: 10.1109/TPS.2018.2884696
|
[23] |
Chen S, van den Berg R G W and Nijdam S 2018 Plasma Sources Sci. Technol. 27 055021 doi: 10.1088/1361-6595/aabd5f
|
[24] |
Liu K L et al 2015 J. Electr. Eng. Technol. 10 1804 doi: 10.5370/JEET.2015.10.4.1804
|
[25] |
Wang H J 2018 IOP Conf. Ser. : Earth Environ. Sci. 186 012005 doi: 10.1088/1755-1315/186/5/012005
|
[26] |
Chen S, Nobelen J C P Y and Nijdam S 2017 Plasma Sources Sci. Technol. 26 095005 doi: 10.1088/1361-6595/aa86b8
|
[27] |
Shi C A et al 2017 J. Food Eng. 211 39 doi: 10.1016/j.jfoodeng.2017.04.035
|
[28] |
Zhang J F et al 2019 J. Fluids Eng. 141 031105 doi: 10.1115/1.4041391
|
[29] |
Qu J G et al 2021 Appl. Therm. Eng. 193 116946 doi: 10.1016/j.applthermaleng.2021.116946
|
[30] |
Zhang J F et al 2018 J. Fluids Eng. 140 101105 doi: 10.1115/1.4040016
|
[31] |
Li C et al 2020 Plasma Sources Sci. Technol. 29 045011 doi: 10.1088/1361-6595/ab708b
|
[1] | Zhiyun HAN, Qingmin LI, Junke LI, Mengxi WANG, Hanwen REN, Liang ZOU. Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress[J]. Plasma Science and Technology, 2024, 26(2): 025505. DOI: 10.1088/2058-6272/ad0d49 |
[2] | Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602 |
[3] | Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5 |
[4] | Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64 |
[5] | Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001 |
[6] | LI Jun(李俊), YANG Zhoujun(杨州军), GAO Li(高丽), LIU Minghai(刘明海), ZHUANG Ge(庄革). Design of Digital Multi-Radian Phase Detector on J-TEXT[J]. Plasma Science and Technology, 2014, 16(10): 974-977. DOI: 10.1088/1009-0630/16/10/13 |
[7] | WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07 |
[8] | Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05 |
[9] | FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01 |
[10] | WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591. |