Advanced Search+
Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
Citation: Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e

Composite wave-absorbing structure combining thin plasma and metasurface

More Information
  • Corresponding author:

    Jingfeng YAO, E-mail: yaojf@hit.edu.cn

    Chengxun YUAN, E-mail: yuancx@hit.edu.cn

  • Received Date: August 02, 2022
  • Revised Date: October 14, 2022
  • Accepted Date: November 07, 2022
  • Available Online: December 05, 2023
  • Published Date: January 19, 2023
  • In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section (RCS) of the target, we designed a novel composite structure of a metasurface and plasma. A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber. The reflection and absorption of the composite structure are numerically and experimentally verified. The finite integration method was used to simulate a composite structure of finite size to obtain the RCS. The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer (Keysight N5234A) and horn antennas, etc. The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface, and it is more convenient for application due to its low plasma thickness requirement and easy fabrication.

  • The research has been financially supported by National Natural Science Foundation of China (No. 12175050) and the Foundation of National Key Laboratory of Electromagnetic Environment of China (No. 202101003).

  • [1]
    Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733 doi: 10.1109/27.57528
    [2]
    Du F, Huang P L and Ji J Z 2017 Optik 147 224 doi: 10.1016/j.ijleo.2017.08.052
    [3]
    Foroutan V, Azarmanesh M N and Foroutan G 2018 Phys. Plasmas 25 023504 doi: 10.1063/1.5018314
    [4]
    He X et al 2016 Plasma Sci. Technol. 18 62 doi: 10.1088/1009-0630/18/1/11
    [5]
    Howlader M, Yang Y Q and Roth J R 2002 Time-averaged electron number density measurement of a one atmosphere uniform glow discharge plasma (OAUDGP) by absorption of microwave radiation Proc. of 2002 IEEE Int. Conf. on Plasma Science (Banff) (IEEE) 271
    [6]
    Lan C H, Hu X W and Jiang Z H 2008 Plasma Sci. Technol. 10 717 doi: 10.1088/1009-0630/10/6/12
    [7]
    Yuan C X et al 2011 IEEE Trans. Plasma Sci. 39 1768 doi: 10.1109/TPS.2011.2160285
    [8]
    Xu J et al 2017 IEEE Trans. Plasma Sci. 45 938 doi: 10.1109/TPS.2017.2700012
    [9]
    Zhao Z M et al 2022 Plasma Sci. Technol. 24 085501 doi: 10.1088/2058-6272/ac6795
    [10]
    Landy N I et al 2008 Phys. Rev. Lett. 100 207402 doi: 10.1103/PhysRevLett.100.207402
    [11]
    Ding F et al 2012 Appl. Phys. Lett. 100 103506 doi: 10.1063/1.3692178
    [12]
    Wang J et al 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242 doi: 10.1109/LAWP.2018.2841015
    [13]
    Xiong Y J et al 2018 Acta Phys. Sin. 67 084202 doi: 10.7498/aps.67.20172262
    [14]
    Lim D, Yu S and Lim S 2018 IEEE Access 6 43654 doi: 10.1109/ACCESS.2018.2862160
    [15]
    Rahmanzadeh M, Rajabalipanah H and Abdolali A 2017 IEEE Trans. Plasma Sci. 45 945 doi: 10.1109/TPS.2017.2700724
    [16]
    Zhou Y et al 2021 Light: Sci. Appl. 10 138 doi: 10.1038/s41377-021-00577-8
    [17]
    Costa F, Monorchio A and Manara G 2012 IEEE Antenn. Propag. Mag. 54 35 doi: 10.1109/MAP.2012.6309153
    [18]
    Costa F, Monorchio A and Manara G 2010 IEEE Trans. Antenn. Propag. 58 1551 doi: 10.1109/TAP.2010.2044329
    [19]
    Feng H L et al 2022 Nanomaterials 12 1731 doi: 10.3390/nano12101731
    [20]
    Yao J F et al 2019 J. Appl. Phys. 125 163306 doi: 10.1063/1.5093382
    [21]
    Zhang W et al 2022 Plasma Sci. Technol. 24 025504 doi: 10.1088/2058-6272/ac4a28
    [22]
    Li B W et al 2018 Plasma Sci. Technol. 20 014015 doi: 10.1088/2058-6272/aa84ab
    [23]
    Zhang Q C et al 2019 J. Appl. Phys. 125 094902 doi: 10.1063/1.5037417
    [24]
    Lin M et al 2015 Plasma Sci. Technol. 17 847 doi: 10.1088/1009-0630/17/10/07
    [25]
    Bai B W et al 2015 IEEE Trans. Plasma Sci. 43 2588 doi: 10.1109/TPS.2015.2447536
    [26]
    Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
    [27]
    Wang G B et al 2016 Plasma Sci. Technol. 18 791 doi: 10.1088/1009-0630/18/8/01
    [28]
    Zhang L and Ouyang J T 2016 Plasma Sci. Technol. 18 266 doi: 10.1088/1009-0630/18/3/09
    [29]
    Liu Y T and Hou Z Y 2019 J. Phys. Conf. Ser. 1324 012073 doi: 10.1088/1742-6596/1324/1/012073
    [30]
    Chaudhury B and Chaturvedi S 2005 IEEE Trans. Plasma Sci. 33 2027 doi: 10.1109/TPS.2005.860122
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Figures(6)

    Article views (56) PDF downloads (65) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return