Citation: | Guanming YANG, Yueqiang LIU, Zhibin WANG, Yongqin WANG, Yutian MIAO, Guangzhou HAO. Effect of ideal internal MHD instabilities on NBI fast ion redistribution in ITER 15 MA scenario[J]. Plasma Science and Technology, 2023, 25(5): 055102. DOI: 10.1088/2058-6272/acab43 |
Transport of fast ions is a crucial issue during the operation of ITER. Redistribution of neutral beam injection (NBI) fast ions by the ideal internal magnetohydrodynamic (MHD) instabilities in ITER is studied utilizing the guiding-center code ORBIT (White R B and Chance M S 1984 Phys. Fluids 27 2455). Effects of the perturbation amplitude A of the internal kink, the perturbation frequency f of the fishbone instability, and the toroidal mode number n of the internal kink are investigated, respectively, in this work. The n = 1 internal kink mode can cause NBI fast ions transporting in real space from regions of 0 < s ≤ 0.32 to 0.32 < s ≤ 0.53 where s labels the normalized plasma radial coordinate. The transport of fast ions is greater as the perturbation amplitude increases. The maximum relative change of the number of fast ions approaches 5% when the perturbation amplitude rises to 500 G. A strong transport is generated between the regions of 0 < s ≤ 0.05 and 0.05 0.1 < s ≤ 2 in the presence of the fishbone instability. Higher frequency results in greater transport, and the number of fast ions in 0 < s ≤ 0.05 is reduced by 30% at the fishbone frequency of 100 kHz. Perturbations with higher n will lead to the excursion of fast ion transport regions outward along the radial direction. The loss of fast ions, however, is not affected by the internal MHD perturbation. Strong transport from 0 < s ≤ 0.05 to 0.05 0.1 < s ≤ 2 does not influence the plasma heating power of ITER, since the NBI fast ions are still located in the plasma core. On the other hand, the influence of fast ion transport from 0 < s ≤ 0.32 to 0.32 0.5 < s ≤ 3 needs further study.
G Y acknowledges Professor RB White for providing the code ORBIT, and Dr Alexei Polevoi for providing the initial distribution data of NBI fast ions in ITER utilized in this work. Numerical computations were performed on HPC Platform of Southwestern Institute of Physics. This work was supported by the National Key Research and Development Program of China (Nos. 2022YFE03060002, 2019YFE03090100) and by the Innovation Program of Southwestern Institute of Physics (No. 202001XWCXRC001). This work is also partly supported by the Youth Science and Technology Innovation Team of Sichuan Province (No. 2022JDTD0003).
[1] |
Heidbrink W W and Sadler G J 1994 Nucl. Fusion 34 535 doi: 10.1088/0029-5515/34/4/I07
|
[2] |
Fasoli A et al 2007 Nucl. Fusion 47 S264 doi: 10.1088/0029-5515/47/6/S05
|
[3] |
Spong D A 2011 Phys. Plasmas 18 056109 doi: 10.1063/1.3575626
|
[4] |
Gorelenkov N N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001 doi: 10.1088/0029-5515/54/12/125001
|
[5] |
White R B 1983 Phys. Fluids 26 2958 doi: 10.1063/1.864060
|
[6] |
Von Thun C P et al 2010 Nucl. Fusion 50 084009 doi: 10.1088/0029-5515/50/8/084009
|
[7] |
Kiptily V G et al 2017 Nucl. Fusion 58 014003 doi: 10.1088/1741-4326/aa9340
|
[8] |
Muscatello C M et al 2012 Nucl. Fusion 52 103022 doi: 10.1088/0029-5515/52/10/103022
|
[9] |
Van Zeeland M A et al 2013 Plasma Phys. Control. Fusion 56 015009 doi: 10.1088/0741-3335/56/1/015009
|
[10] |
Garcia-Munoz M et al 2013 Nucl. Fusion 53 123008 doi: 10.1088/0029-5515/53/12/123008
|
[11] |
White R B et al 2010 Plasma Phys. Control. Fusion 52 045012 doi: 10.1088/0741-3335/52/4/045012
|
[12] |
Van Zeeland M A et al 2015 Nucl. Fusion 55 073028 doi: 10.1088/0029-5515/55/7/073028
|
[13] |
Muscatello C M et al 2012 Plasma Phys. Control. Fusion 54 025006 doi: 10.1088/0741-3335/54/2/025006
|
[14] |
Shen W et al 2014 Phys. Plasmas 21 092514 doi: 10.1063/1.4896341
|
[15] |
Kim D et al 2018 Nucl. Fusion 58 082029 doi: 10.1088/1741-4326/aac10f
|
[16] |
Khan M et al 2012 J. Fusion Energy 31 547 doi: 10.1007/s10894-011-9503-3
|
[17] |
Feng Z C, Qiu Z Y and Sheng Z M 2013 Phys. Plasmas 20 122309 doi: 10.1063/1.4849455
|
[18] |
Scott S D et al 2020 J. Plasma Phys. 86 865860508 doi: 10.1017/S0022377820001087
|
[19] |
Zhao R et al 2020 Plasma Phys. Control. Fusion 62 115001 doi: 10.1088/1361-6587/abb0d4
|
[20] |
Singh M J et al 2017 New J. Phys. 19 055004 doi: 10.1088/1367-2630/aa639d
|
[21] |
Shimada M et al 2007 Nucl. Fusion 47 S1 doi: 10.1088/0029-5515/47/6/S01
|
[22] |
Von Thun C P et al 2012 Nucl. Fusion 52 094010 doi: 10.1088/0029-5515/52/9/094010
|
[23] |
Tani K et al 2015 Nucl. Fusion 55 053010 doi: 10.1088/0029-5515/55/5/053010
|
[24] |
Varje J et al 2016 Nucl. Fusion 56 046014 doi: 10.1088/0029-5515/56/4/046014
|
[25] |
Sanchis L et al 2021 Nucl. Fusion 61 046006 doi: 10.1088/1741-4326/abdfdd
|
[26] |
Farengo R et al 2012 Plasma Phys. Control. Fusion 54 025007 doi: 10.1088/0741-3335/54/2/025007
|
[27] |
Farengo R et al 2013 Nucl. Fusion 53 043012 doi: 10.1088/0029-5515/53/4/043012
|
[28] |
Farengo R et al 2014 Phys. Plasmas 21 082512 doi: 10.1063/1.4893145
|
[29] |
Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
|
[30] |
White R B et al 1985 Phys. Fluids 28 278 doi: 10.1063/1.865198
|
[31] |
Heidbrink W W et al 1986 Phys. Rev. Lett. 57 835 doi: 10.1103/PhysRevLett.57.835
|
[32] |
White R B et al 1988 Phys. Rev. Lett. 60 2038 doi: 10.1103/PhysRevLett.60.2038
|
[33] |
Betti R and Freidberg J P 1993 Phys. Rev. Lett. 70 3428 doi: 10.1103/PhysRevLett.70.3428
|
[34] |
Kolesnichenko Y I, Lutsenko V V and Marchenko V S 2000 Nucl. Fusion 40 1731 doi: 10.1088/0029-5515/40/10/305
|
[35] |
Wang S J 2001 Phys. Rev. Lett. 86 5286 doi: 10.1103/PhysRevLett.86.5286
|
[36] |
Graves J P 2004 Phys. Rev. Lett. 92 185003 doi: 10.1103/PhysRevLett.92.185003
|
[37] |
Fu G Y et al 2006 Phys. Plasmas 13 052517 doi: 10.1063/1.2203604
|
[38] |
He H D et al 2011 Nucl. Fusion 51 113012 doi: 10.1088/0029-5515/51/11/113012
|
[39] |
Shen W et al 2015 Phys. Plasmas 22 042510 doi: 10.1063/1.4917341
|
[40] |
Wang X Q, Zhang R B and Meng G 2016 Phys. Plasmas 23 074506 doi: 10.1063/1.4958645
|
[41] |
Pei Y B et al 2017 Phys. Plasmas 24 032507 doi: 10.1063/1.4978562
|
[42] |
Yu L M et al 2019 Nucl. Fusion 59 086016 doi: 10.1088/1741-4326/ab22dd
|
[43] |
Von Thun C P et al 2011 Nucl. Fusion 51 053003 doi: 10.1088/0029-5515/51/5/053003
|
[44] |
White R B and Chance M S 1984 Phys. Fluids 27 2455 doi: 10.1063/1.864527
|
[45] |
Polevoi A, Shirai H and Takizuka T 1997 Benchmarking of the NBI Block in Astra Code Versus the OFMC Calculations (Tokyo: Japan Atomic Energy Research Institute JAERIData/Code 97-014)
|
[46] |
ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2471 doi: 10.1088/0029-5515/39/12/305
|
[47] |
White R B 2001 The Theory of Toroidally Confined Plasmas(London: Imperial College Press)
|
[48] |
Liu Y Q et al 2000 Phys. Plasmas 7 3681 doi: 10.1063/1.1287744
|
[49] |
Gude A et al 1999 Nucl. Fusion 39 127 doi: 10.1088/0029-5515/39/1/308
|
[50] |
Staebler A et al 2005 Nucl. Fusion 45 617 doi: 10.1088/0029-5515/45/7/009
|
[51] |
Chen W et al 2010 Nucl. Fusion 50 084008 doi: 10.1088/0029-5515/50/8/084008
|
[52] |
Zheng T et al 2016 Plasma Sci. Technol. 18 595 doi: 10.1088/1009-0630/18/6/03
|
[53] |
Yu L M et al 2017 J. Phys. Soc. Japan 86 024501 doi: 10.7566/JPSJ.86.024501
|
[54] |
Furth H P et al 1990 Nucl. Fusion 30 1799 doi: 10.1088/0029-5515/30/9/009
|
[55] |
Brochard G et al 2020 Nucl. Fusion 60 086002 doi: 10.1088/1741-4326/ab9255
|
[56] |
Brochard G et al 2020 Nucl. Fusion 60 126019 doi: 10.1088/1741-4326/abb14b
|
[1] | Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52 |
[2] | Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940 |
[3] | ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12 |
[4] | HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13 |
[5] | LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08 |
[6] | LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10 |
[7] | LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01 |
[8] | Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21 |
[9] | DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366. |
[10] | B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361. |
1. | Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w |
2. | Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8 |
3. | El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178 |
4. | Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7 |
5. | Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991 |
6. | Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0 |
7. | Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312 |
8. | Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1 |
9. | Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0 |
10. | Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c |
11. | Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7 |
12. | Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z |
13. | Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c |
14. | Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e |
15. | Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y |
16. | Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487 |
17. | Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262 |
18. | Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164 |