Advanced Search+
Hari Prasad NANDYALA, Amit KUMAR, Jayachandran THANKAPPAN. A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance[J]. Plasma Science and Technology, 2023, 25(5): 055503. DOI: 10.1088/2058-6272/acac63
Citation: Hari Prasad NANDYALA, Amit KUMAR, Jayachandran THANKAPPAN. A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance[J]. Plasma Science and Technology, 2023, 25(5): 055503. DOI: 10.1088/2058-6272/acac63

A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance

More Information
  • Corresponding author:

    Amit KUMAR,E-mail: amitk@ae.iitm.ac.in

  • Received Date: September 04, 2022
  • Revised Date: November 12, 2022
  • Accepted Date: December 15, 2022
  • Available Online: December 05, 2023
  • Published Date: February 21, 2023
  • In an arcjet thruster, the cathode and constrictor degrade with time, and the electrical arc discharge may become unsymmetrical. In this work, a three-dimensional numerical model of a hydrogen plasma arcjet is developed and validated to study the effect of unsymmetrical electric arc discharge on thruster performance. The unsymmetrical arc discharge is realized by introducing a radial shift of the cathode so that the cathode tip offset is 80 μm (25% of the constrictor radius). Simulations are conducted for both axially centered cathode (coaxial) and off-centered cathode (non-coaxial) configurations with identical propellant flow rates and input current. Simulations show asymmetrical arc discharge in the non-coaxial cathode configuration, resulting in azimuthally asymmetric Joule heating, species concentrations, and velocity field. This asymmetry continues as the plasma expands in the divergent section of the nozzle. Temperature, species concentrations, and axial velocity exhibit asymmetric radial distribution at the nozzle exit. The computed Joule heating was found to reduce with cathode shift, and consequently, the thrust and specific impulse of the thruster was decreased by about 6.6%. In the case of the non-coaxial cathode, geometric asymmetry also induces a small side thrust.

  • Special thanks is extended to Shri Pedda Peraiah C, who assisted in the development of the three-dimensional code and its parallelization. The authors would like to thank the Indian Space Research Organization (VSSC-ISRO) for funding this research through ISRO-ⅡTM Cell.

  • [1]
    Kindracki J, Paszkiewicz P and Mwżyk Ł 2019 Aerosp. Sci. Technol. 92 847 doi: 10.1016/j.ast.2019.07.010
    [2]
    Jahn R G 2006 Physics of Electric Propulsion 1st edn (New York, Dover)
    [3]
    Dale E, Jorns B and Gallimore A 2020 Aerospace 7 120 doi: 10.3390/aerospace7090120
    [4]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
    [5]
    Wollenhaupt B, Le Q H and Herdrich G 2018 Aircr. Eng. Aerosp. Technol. 90 280 doi: 10.1108/AEAT-08-2016-0124
    [6]
    Blinov V N et al 2020 J. Phys. Conf. Ser. 1441 012088 doi: 10.1088/1742-6596/1441/1/012088
    [7]
    O'Reilly D, Herdrich G and Kavanagh D F 2021 Aerospace 8 22 doi: 10.3390/aerospace8010022
    [8]
    Böhrk H, Schmidt T D and Auweter-Kurtz M 2007 Aerosp. Sci. Technol. 11 211 doi: 10.1016/j.ast.2006.10.002
    [9]
    Cinquegrana D et al 2019 Aerosp. Sci. Technol. 88 258 doi: 10.1016/j.ast.2019.03.026
    [10]
    Namba S et al 2018 Jpn. J. Appl. Phys. 57 066101 doi: 10.7567/JJAP.57.066101
    [11]
    Düzel Ü et al 2020 J. Thermophys Heat Transfer 34 393 doi: 10.2514/1.T5722
    [12]
    Curran F M and Haag T W 1992 J. Spacecr. Rockets 29 444 doi: 10.2514/3.25484
    [13]
    Tang H B et al 2011 Aerosp. Sci. Technol. 15 577 doi: 10.1016/j.ast.2010.12.001
    [14]
    Wu P et al 2020 Plasma Sci. Technol. 22 094008 doi: 10.1088/2058-6272/ab9172
    [15]
    Koroteev A S, Blagov V V and Lomovtsev M A 1993 Acta Astronaut. 29 37 doi: 10.1016/0094-5765(93)90067-7
    [16]
    Sankovic J and Jacobson D 1995 Performance of a miniaturized arcjet Proc. 31st Joint Propulsion Conf. Exhibit (San Diego: AIAA) (https://doi.org/10.2514/6.1995-2822)
    [17]
    Sun J H et al 2020 Plasma Sci. Technol. 22 034012 doi: 10.1088/2058-6272/ab6635
    [18]
    Glocker B and Auweter-Kurtz M 1993 J. Propul. Power 9 874 doi: 10.2514/3.23702
    [19]
    Berns D et al 1996 Plasma and cathode emission from a high power hydrogen arcjet Proc. 32nd Joint Propulsion Conf. Exhibit (Lake Buena Vista: AIAA) (https://doi.org/10.2514/6.1996-2703)
    [20]
    Sankovic J and Hopkins J 1996 Miniaturized arcjet performance improvement Proc. 32nd Joint Propulsion Conf. Exhibit (Lake Buena Vista: AIAA) (https://doi.org/10.2514/6.1996-2962)
    [21]
    Kakami A, Hanyu K and Yano Y 2020 Aerosp. Sci. Technol. 104 105896 doi: 10.1016/j.ast.2020.105896
    [22]
    Niu C et al 2021 Plasma Sci. Technol. 23 104006 doi: 10.1088/2058-6272/ac125e
    [23]
    Jack J R 1961 ARS J. 31 1685 doi: 10.2514/8.5894
    [24]
    Topham D R 1971 J. Phys. D: Appl. Phys. 4 1114 doi: 10.1088/0022-3727/4/8/310
    [25]
    Glocker B, Schrade H and Sleziona P 1990 Numerical prediction of arcjet performance Proc. 21st Int. Electric Propulsion Conf. (Orlando: AIAA) (https://doi.org/10.2514/6.1990-2612)
    [26]
    Watson V R and Pegot E B 1967 Numerical calculations for the characteristics of a gas flowing axially through a constricted arc NASA Technical Note NASA TN D-4042
    [27]
    Fujita K and Arakawa Y 1996 J. Propul. Power 12 120 doi: 10.2514/3.23999
    [28]
    Miller S and Martinez-Sanchez M 1993 Multifluid nonequilibrium simulation of electrothermal arcjets Proc. 29th Joint Propulsion Conf. Exhibit (Monterey: AIAA) (https://doi.org/10.2514/6.1993-2101)
    [29]
    Tang H B et al 2014 J. Aerosp. Eng. 27 16 doi: 10.1061/(ASCE)AS.1943-5525.0000213
    [30]
    Wei Y M, He Q S and Wang H X 2016 J. Propul. Power 32 1472 doi: 10.2514/1.B36098
    [31]
    Wang H X et al 2017 Plasma Chem. Plasma Process. 37 877 doi: 10.1007/s11090-017-9807-9
    [32]
    Wang H X et al 2020 J. Phys. D: Appl. Phys. 53 505205 doi: 10.1088/1361-6463/abb6a9
    [33]
    Niu C et al 2022 Plasma Chem. Plasma Process. 42 885 doi: 10.1007/s11090-022-10249-z
    [34]
    Rhodes R and Keefer D 1990 Numerical modeling of an arcjet thruster Proc. 21st Int. Electric Propulsion Conf. (Orlando: AIAA) (https://doi.org/10.2514/6.1990-2614)
    [35]
    Butler G and King D 1992 Single and two fluid simulations of arcjet performance Proc. 28th Joint Propulsion Conf. Exhibit (Nashville: AIAA) (https://doi.org/10.2514/6.1992-3104)
    [36]
    Megli T W et al 1996 J. Propul. Power 12 1062 doi: 10.2514/3.24144
    [37]
    Vincenti W G and Kruger J C H 1965 Introduction to Physical Gas Dynamics (New York: Wiley)
    [38]
    Megli T W 1995 A nonequilibrium plasmadynamics model for nitrogen/hydrogen arcjet.PhD Thesis (University of Illinois)
    [39]
    Liou M S 2006 J. Comput. Phys. 214 137 doi: 10.1016/j.jcp.2005.09.020
    [40]
    Blazek J 2001 Computational Fluid Dynamics: Principles of Grid Generation 1st edn (Amsterdam: Elsevier)
    [41]
    McCay T D and Dexter C E 1987 J. Spacecr. Rockets 24 372 doi: 10.2514/3.25927
    [42]
    Janev R K et al 1987 Elementary Processes in Hydrogen-Helium Plasmas (Berlin, Heidelberg: Springer)
    [43]
    Hirschfelder J O, Curtiss C F and Bird R B 1954 Molecular Theory of Gases and Liquids (New York: Wiley)
    [44]
    Chen F F 2015 Introduction to Plasma Physics and Controlled Fusion 3rd edn (Cham: Springer)
    [45]
    Weber R E and Tempelmeyer K E 1964 Calculation of the D-C electrical conductivity of equilibrium nitrogen and argon plasma with and without alkali metal seed Technical Documentary Report AEDC-TDR-64-119
    [46]
    Robertson D K 1998 A two-dimensional, non-equilibrium numerical model of an alkali seeded hydrogen arcjet thruster MSc Thesis Massachusetts Institute of Technology
    [47]
    Murphy A B 2012 Chem. Phys. 398 64 doi: 10.1016/j.chemphys.2011.06.017
    [48]
    Akhare D et al 2022 Plasma Sci. Technol. 24 025505 doi: 10.1088/2058-6272/ac3e58
    [49]
    Back L H, Gier H L and Massier P F 1965 AIAA J. 3 1606 doi: 10.2514/3.3216
    [50]
    Liebeskind J G, Hanson R K and Cappelli M A 1993 Appl. Opt. 32 6117 doi: 10.1364/AO.32.006117
    [51]
    Storm P V and Cappelli M A 1996 Appl. Opt. 35 4913 doi: 10.1364/AO.35.004913
    [52]
    Meana-Fernández A et al 2019 Eng. Appl. Comput. Fluid Mech. 13 359
    [53]
    Megli T W et al 1998 J. Propul. Power 14 29 doi: 10.2514/2.5262
  • Cited by

    Periodical cited type(9)

    1. Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261
    2. Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992
    3. Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557
    4. Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w
    5. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    6. Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337
    7. Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710
    8. Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981
    9. Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488

    Other cited types(0)

Catalog

    Figures(13)  /  Tables(5)

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return