Citation: | Tian ZHOU, Douhao YANG, Yijun WANG, Jiushan CHENG, Qiang CHEN, Bowen LIU, Zhongwei LIU. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption[J]. Plasma Science and Technology, 2023, 25(8): 085505. DOI: 10.1088/2058-6272/acc3d2 |
Defect engineering of metal-organic frameworks has attracted increasing attention in recent years for potential applications in gas storage and catalysis. In this study, defective UiO-66 is obtained by Ar and H2 plasma treatments. Compared with the pristine UiO-66, a new aperture with a size of ~4 nm appears for a sample with the plasma modification, indicating the formation of mesopores within UiO-66 framework. Characterization results demonstrate that the pore volume, surface area and the number of Lewis and Brönsted acid sites can be easily tuned by varying the discharge parameters. The adsorption performance of UiO-66 is evaluated for the adsorption of methyl blue. In comparison to the pristine UiO-66 and the sample with H2 plasma treatment, the Ar plasma modified sample shows excellent adsorption activity due to the suitable pore size and volume. Equilibrium adsorption capacity as high as 40.6 mg·g-1 is achieved for the UiO-66 (Ar) sample.
This study is financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021), the Natural Science Foundation of Beijing Municipality (Nos. KZ202010015022 and 8222055), the Yunnan Police College Project (Nos. YNPC-S2021002 and YJKF002) the and Beijing Institute of Graphic Communication Project (Nos. Ec202207 and S202210015021).
[1] |
Fu H et al 2018 Dalton Trans.
47 9014 doi: 10.1039/C8DT02219D
|
[2] |
Yang S et al 2021 Coord. Chem. Rev.
427 213525 doi: 10.1016/j.ccr.2020.213525
|
[3] |
Zhao T T et al 2019 Front. Chem. Sci. Eng.
13 444 doi: 10.1007/s11705-019-1811-6
|
[4] |
Lv D F et al 2019 Chem. Eng. J.
375 122074 doi: 10.1016/j.cej.2019.122074
|
[5] |
Chen Z et al 2019 Coord. Chem. Rev.
386 32 doi: 10.1016/j.ccr.2019.01.017
|
[6] |
Cavka J H et al 2008 J. Am. Chem. Soc.
130 13850 doi: 10.1021/ja8057953
|
[7] |
Zou D and Liu D 2019 Mater. Today Chem.
12 139 doi: 10.1016/j.mtchem.2018.12.004
|
[8] |
DeStefano M R et al 2017 Chem. Mater.
29 1357 doi: 10.1021/acs.chemmater.6b05115
|
[9] |
Wu H et al 2013 J. Am. Chem. Soc.
135 10525 doi: 10.1021/ja404514r
|
[10] |
Liu L et al 2019 Nat. Chem.
11 622 doi: 10.1038/s41557-019-0263-4
|
[11] |
Feng Y et al 2019 Ind. Eng. Chem. Res.
58 17646 doi: 10.1021/acs.iecr.9b03188
|
[12] |
Marshall R J and Forgan R S 2016 Eur. J. Org. Chem.
2016 4310 doi: 10.1002/ejic.201600394
|
[13] |
Xiang W et al 2020 J. Mater. Chem. A
8 21526 doi: 10.1039/D0TA08009H
|
[14] |
Xing W et al 2020 Appl. Energy
277 115560 doi: 10.1016/j.apenergy.2020.115560
|
[15] |
Fan Q et al 2019 ACS Appl. Electron.
1 444 doi: 10.1021/acsaelm.9b00006
|
[16] |
Chen S et al 2022 J. Vac. Sci. Technol.
40 023401 doi: 10.1116/6.0001578
|
[17] |
Guo Z et al 2015 Chem. Mater.
27 5988 doi: 10.1021/acs.chemmater.5b02137
|
[18] |
Guo Q et al 2018 ACS Appl. Mater. Interfaces
10 8384 doi: 10.1021/acsami.8b00388
|
[19] |
Xiong W et al 2018 J. Mater. Chem. A
6 4297 doi: 10.1039/C7TA10202J
|
[20] |
Li X et al 2022 Appl. Surf. Sci.
600 154199 doi: 10.1016/j.apsusc.2022.154199
|
[21] |
Bueken B et al 2017 Chem. Sci.
8 3939 doi: 10.1039/C6SC05602D
|
[22] |
Hao L et al 2018 Chem. Comm.
54 11817 doi: 10.1039/C8CC05895D
|
[23] |
Fan Q et al 2019 J. Vac. Sci. Technol.
37 010904 doi: 10.1116/1.5062842
|
[24] |
Zhang A et al 2021 Sep. Purif. Technol.
270 118842 doi: 10.1016/j.seppur.2021.118842
|
[25] |
Feng Y et al 2019 ACS Appl. Nano Mater.
2 5973 doi: 10.1021/acsanm.9b01403
|
[26] |
Xuan K et al 2018 J. CO2 Util.
27 272 doi: 10.1016/j.jcou.2018.08.002
|
[27] |
Xu Y P et al 2020 Catal. Sci. Technol.
10 1699 doi: 10.1039/C9CY02330E
|
[28] |
Caratelli C et al 2017 J. Catal.
352 401 doi: 10.1016/j.jcat.2017.06.014
|
[29] |
Jystad A et al 2020 J. Phys. Chem. C
124 15231 doi: 10.1021/acs.jpcc.0c03292
|
[30] |
Vargas A M M et al 2011 Chem. Eng. J.
168 722 doi: 10.1016/j.cej.2011.01.067
|
[1] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[2] | Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78 |
[3] | Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8 |
[4] | Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27 |
[5] | Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503 |
[6] | Zengchao JI (季曾超), Shixiu CHEN (陈仕修), Shen GAO (高深). Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode[J]. Plasma Science and Technology, 2017, 19(1): 15003-015003. DOI: 10.1088/1009-0630/19/1/015003 |
[7] | Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001 |
[8] | WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01 |
[9] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[10] | DING Liang (丁亮), HUO Wenqing (霍文青), YANG Xinjie (杨新杰), XU Yuemin (徐跃民). The Interaction of C-Band Microwaves with Large Plasma Sheets[J]. Plasma Science and Technology, 2012, 14(1): 9-13. DOI: 10.1088/1009-0630/14/1/03 |
1. | Zhou, X.-F., Xiang, H.-F., Yang, M.-H. et al. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. Journal of Physics D: Applied Physics, 2023, 56(45): 455202. DOI:10.1088/1361-6463/acec81 |
2. | Lu, X., Zhang, L., Wang, S. et al. Repetitive pulsed gas-liquid discharge in different atmospheres: from discharge characteristics to plasma-liquid interactions. Physical Chemistry Chemical Physics, 2023, 25(37): 25499-25510. DOI:10.1039/d3cp01074k |