Advanced Search+
Tian ZHOU, Douhao YANG, Yijun WANG, Jiushan CHENG, Qiang CHEN, Bowen LIU, Zhongwei LIU. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption[J]. Plasma Science and Technology, 2023, 25(8): 085505. DOI: 10.1088/2058-6272/acc3d2
Citation: Tian ZHOU, Douhao YANG, Yijun WANG, Jiushan CHENG, Qiang CHEN, Bowen LIU, Zhongwei LIU. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption[J]. Plasma Science and Technology, 2023, 25(8): 085505. DOI: 10.1088/2058-6272/acc3d2

Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption

More Information
  • Corresponding author:

    LIU Zhongwei, E-mail: liuzhongwei@bigc.edu.cn

  • 1 Tian Zhou and Douhao Yang contributed equally to this study.

  • Received Date: September 29, 2022
  • Revised Date: March 07, 2023
  • Accepted Date: March 12, 2023
  • Available Online: December 05, 2023
  • Published Date: April 18, 2023
  • Defect engineering of metal-organic frameworks has attracted increasing attention in recent years for potential applications in gas storage and catalysis. In this study, defective UiO-66 is obtained by Ar and H2 plasma treatments. Compared with the pristine UiO-66, a new aperture with a size of ~4 nm appears for a sample with the plasma modification, indicating the formation of mesopores within UiO-66 framework. Characterization results demonstrate that the pore volume, surface area and the number of Lewis and Brönsted acid sites can be easily tuned by varying the discharge parameters. The adsorption performance of UiO-66 is evaluated for the adsorption of methyl blue. In comparison to the pristine UiO-66 and the sample with H2 plasma treatment, the Ar plasma modified sample shows excellent adsorption activity due to the suitable pore size and volume. Equilibrium adsorption capacity as high as 40.6 mg·g-1 is achieved for the UiO-66 (Ar) sample.

  • This study is financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021), the Natural Science Foundation of Beijing Municipality (Nos. KZ202010015022 and 8222055), the Yunnan Police College Project (Nos. YNPC-S2021002 and YJKF002) the and Beijing Institute of Graphic Communication Project (Nos. Ec202207 and S202210015021).

  • [1]
    Fu H et al 2018 Dalton Trans. 47 9014 doi: 10.1039/C8DT02219D
    [2]
    Yang S et al 2021 Coord. Chem. Rev. 427 213525 doi: 10.1016/j.ccr.2020.213525
    [3]
    Zhao T T et al 2019 Front. Chem. Sci. Eng. 13 444 doi: 10.1007/s11705-019-1811-6
    [4]
    Lv D F et al 2019 Chem. Eng. J. 375 122074 doi: 10.1016/j.cej.2019.122074
    [5]
    Chen Z et al 2019 Coord. Chem. Rev. 386 32 doi: 10.1016/j.ccr.2019.01.017
    [6]
    Cavka J H et al 2008 J. Am. Chem. Soc. 130 13850 doi: 10.1021/ja8057953
    [7]
    Zou D and Liu D 2019 Mater. Today Chem. 12 139 doi: 10.1016/j.mtchem.2018.12.004
    [8]
    DeStefano M R et al 2017 Chem. Mater. 29 1357 doi: 10.1021/acs.chemmater.6b05115
    [9]
    Wu H et al 2013 J. Am. Chem. Soc. 135 10525 doi: 10.1021/ja404514r
    [10]
    Liu L et al 2019 Nat. Chem. 11 622 doi: 10.1038/s41557-019-0263-4
    [11]
    Feng Y et al 2019 Ind. Eng. Chem. Res. 58 17646 doi: 10.1021/acs.iecr.9b03188
    [12]
    Marshall R J and Forgan R S 2016 Eur. J. Org. Chem. 2016 4310 doi: 10.1002/ejic.201600394
    [13]
    Xiang W et al 2020 J. Mater. Chem. A 8 21526 doi: 10.1039/D0TA08009H
    [14]
    Xing W et al 2020 Appl. Energy 277 115560 doi: 10.1016/j.apenergy.2020.115560
    [15]
    Fan Q et al 2019 ACS Appl. Electron. 1 444 doi: 10.1021/acsaelm.9b00006
    [16]
    Chen S et al 2022 J. Vac. Sci. Technol. 40 023401 doi: 10.1116/6.0001578
    [17]
    Guo Z et al 2015 Chem. Mater. 27 5988 doi: 10.1021/acs.chemmater.5b02137
    [18]
    Guo Q et al 2018 ACS Appl. Mater. Interfaces 10 8384 doi: 10.1021/acsami.8b00388
    [19]
    Xiong W et al 2018 J. Mater. Chem. A 6 4297 doi: 10.1039/C7TA10202J
    [20]
    Li X et al 2022 Appl. Surf. Sci. 600 154199 doi: 10.1016/j.apsusc.2022.154199
    [21]
    Bueken B et al 2017 Chem. Sci. 8 3939 doi: 10.1039/C6SC05602D
    [22]
    Hao L et al 2018 Chem. Comm. 54 11817 doi: 10.1039/C8CC05895D
    [23]
    Fan Q et al 2019 J. Vac. Sci. Technol. 37 010904 doi: 10.1116/1.5062842
    [24]
    Zhang A et al 2021 Sep. Purif. Technol. 270 118842 doi: 10.1016/j.seppur.2021.118842
    [25]
    Feng Y et al 2019 ACS Appl. Nano Mater. 2 5973 doi: 10.1021/acsanm.9b01403
    [26]
    Xuan K et al 2018 J. CO2 Util. 27 272 doi: 10.1016/j.jcou.2018.08.002
    [27]
    Xu Y P et al 2020 Catal. Sci. Technol. 10 1699 doi: 10.1039/C9CY02330E
    [28]
    Caratelli C et al 2017 J. Catal. 352 401 doi: 10.1016/j.jcat.2017.06.014
    [29]
    Jystad A et al 2020 J. Phys. Chem. C 124 15231 doi: 10.1021/acs.jpcc.0c03292
    [30]
    Vargas A M M et al 2011 Chem. Eng. J. 168 722 doi: 10.1016/j.cej.2011.01.067
  • Related Articles

    [1]Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669
    [4]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [5]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [6]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [7]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [8]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [9]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [10]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
  • Cited by

    Periodical cited type(19)

    1. Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
    2. Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021
    3. Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672
    4. Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
    5. Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8
    6. Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486
    7. Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253
    8. Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253
    9. Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173
    10. Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4
    11. Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9
    12. Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573
    13. Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924
    14. Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841
    15. Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9
    16. Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321
    17. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30
    18. Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8
    19. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Figures(8)  /  Tables(3)

    Article views (75) PDF downloads (48) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return