Advanced Search+
Shubin CHEN, Shiyu WANG, Anna ZHU, Ruixue WANG. Multiple chemical warfare agent simulant decontamination by self-driven microplasma[J]. Plasma Science and Technology, 2023, 25(11): 114002. DOI: 10.1088/2058-6272/acd32c
Citation: Shubin CHEN, Shiyu WANG, Anna ZHU, Ruixue WANG. Multiple chemical warfare agent simulant decontamination by self-driven microplasma[J]. Plasma Science and Technology, 2023, 25(11): 114002. DOI: 10.1088/2058-6272/acd32c

Multiple chemical warfare agent simulant decontamination by self-driven microplasma

More Information
  • Corresponding author:

    ZHU Anna, E-mail: chuanna0306@163.com

    WANG Ruixue, E-mail: wrx@mail.buct.edu.cn

  • Received Date: December 21, 2022
  • Revised Date: April 24, 2023
  • Accepted Date: May 05, 2023
  • Available Online: December 05, 2023
  • Published Date: July 06, 2023
  • Low-temperature plasma is a green and high-efficiency technology for chemical warfare agent (CWA) decontamination. However, traditional plasma devices suffer from the problems of high-power composition and large power-supply size, which limit their practical applications. In this paper, a self-driven microplasma decontamination system, induced by a dielectric-dielectric rotary triboelectric nanogenerator (dd-rTENG), was innovatively proposed for the decontamination of CWA simulants. The microplasma was characterized via electrical measurements, optical emission spectra and ozone concentration detection. With an output voltage of −3460 V, the dd-rTENG can successfully excite microplasma in air. Reactive species, such as OH, O(1D), Hα and O3 were detected. With input average power of 0.116 W, the decontamination rate of 2-chloroethyl ethyl sulfide reached 100% within 3 min of plasma treatment, while the decontamination rates of malathion and dimethyl methylphosphonate reached (65.92 ± 1.65)% and (60.88 ± 1.92)% after 7 min of plasma treatment, respectively. In addition, the decontamination rates gradually decreased with the increase in the simulant concentrations. Typical products were identified and analyzed. This study demonstrates the broad spectrum and feasibility of the dd-rTENG-microplasma for CWA elimination, which provides significant guidance for their practical applications in the future.

  • This work was supported by National Natural Science Foundation of China (No. 51877205), Fundamental Research Funds for the Central Universities (No. buct201906), the State Key Laboratory of NBC Protection for Civilian (No. SKLNBC2021-0X) and Beijing Nova Program (No. 2022015).

  • [1]
    Nicholson-Roberts T C 2019 J. Royal. Army Med. Corps 165 183 doi: 10.1136/jramc-2018-001072
    [2]
    Li Y et al 2022 J. Hazard. Mater. 424127536 doi: 10.1016/j.jhazmat.2021.127536
    [3]
    Lemieux P et al 2021 J. Air Waste Manage. 71 462 doi: 10.1080/10962247.2020.1853627
    [4]
    Biswas S et al 2021 J. Phys. Chem. C 125 21922 doi: 10.1021/acs.jpcc.1c05632
    [5]
    Ploskonka A M et al 2019 J. Hazard. Mater. 375 191 doi: 10.1016/j.jhazmat.2019.04.044
    [6]
    Momeni M R et al 2018 ACS Appl. Mater. Interfaces 10 18435 doi: 10.1021/acsami.8b03544
    [7]
    Ci Y et al 2017 Chin. J. Front. Health Quarant. 40 39 doi: 10.16408/j.1004-9770.2017.01.009
    [8]
    Zhao S P et al 2020 J. Environ. Chem. Eng. 8 104221 doi: 10.1016/j.jece.2020.104221
    [9]
    Wu C D et al 2009 J. Jiangsu. Univ. (Nat. Sci. Ed. ) 30 623 doi: 10.3969/j.issn.1671-7775.2009.06.019
    [10]
    Herrmann H W et al 1999 Phys. Plasmas 6 2284 doi: 10.1063/1.873480
    [11]
    Moeller T M et al 2002 IEEE T. Plasma Sci. 30 1454 doi: 10.1109/TPS.2002.804197
    [12]
    Chen D Q et al 2021 J. Environ. Chem. Eng. 9 106776 doi: 10.1016/j.jece.2021.106776
    [13]
    Yi Z H et al 2022 J. Environ. Chem. Eng. 10 107383 doi: 10.1016/j.jece.2022.107383
    [14]
    Yehia S A et al 2022 J. Water. Process Eng. 46 102637 doi: 10.1016/j.jwpe.2022.102637
    [15]
    Zhai C et al 2018 Appl. Energ. 231 1346 doi: 10.1016/j.apenergy.2018.09.120
    [16]
    Wong M C et al 2019 Adv. Funct. Mater. 29 1904090 doi: 10.1002/adfm.201904090
    [17]
    Bouza M et al 2020 J. Am. Soc. Mass Spectr. 31 727 doi: 10.1021/jasms.0c00002
    [18]
    Zi Y L et al 2018 Adv. Funct. Mater. 28 1800610 doi: 10.1002/adfm.201800610
    [19]
    Chen X Y et al 2015 Appl. Phys. Lett. 107 114103 doi: 10.1063/1.4931463
    [20]
    Li A Y et al 2017 Nat. Nanotechnol. 12 481 doi: 10.1038/nnano.2017.17
    [21]
    Bouza M et al 2019 Rapid Commun. Mass Spectrom. 33 1293 doi: 10.1002/rcm.8469
    [22]
    Han K et al 2020 Energ. Environ. Sci. 13 2450 doi: 10.1039/D0EE01102A
    [23]
    Wang Z Z et al 2020 Nano Energy 74 104910 doi: 10.1016/j.nanoen.2020.104910
    [24]
    Zhao K et al 2018 Nano Energy 53 898 doi: 10.1016/j.nanoen.2018.09.057
    [25]
    Han C et al 2015 Nano Res. 8 219 doi: 10.1007/s12274-014-0634-5
    [26]
    Li S M et al 2021 Nano Energy 88 106287 doi: 10.1016/j.nanoen.2021.106287
    [27]
    Cheng J et al 2018 Nat. Commun. 9 3733 doi: 10.1038/s41467-018-06198-x
    [28]
    Islam E et al 2020 Nano Energy 77 105250 doi: 10.1016/j.nanoen.2020.105250
    [29]
    Davies D 1969 J. Phys. D: Appl. Phys. 2 1533 doi: 10.1088/0022-3727/2/11/307
    [30]
    Bai Y et al 2022 Nano Energy 95 106992 doi: 10.1016/j.nanoen.2022.106992
    [31]
    Skoro N 2018 Eur. Phys. J. D 72 2 doi: 10.1140/epjd/e2017-80329-9
    [32]
    Kuhs J et al 2018 J. Vac. Sci. Technol. 36 01A113 doi: 10.1116/1.5003339
    [33]
    Wang R X et al 2019 J. Phys. D: Appl. Phys. 52 074002 doi: 10.1088/1361-6463/aaf4c8
    [34]
    Liu D X et al 2017 Plasma Sources Sci. T. 26 045009 doi: 10.1088/1361-6595/aa5c22
    [35]
    Herron J T et al 2001 Plasma Chem. Plasma P. 21 459 doi: 10.1023/A:1011082611822
    [36]
    Naidis G V 2014 Plasma Sources Sci. T. 23 065014 doi: 10.1088/0963-0252/23/6/065014
    [37]
    Ye Z P et al 2018 Catal. 8 91 doi: 10.3390/catal8020091
    [38]
    Wang R X et al 2022 Plasma Chem. Plasma P. 42 303 doi: 10.1007/s11090-021-10225-z
    [39]
    Zhou J J 2009 The fundamental study on degradation of DMMP and CEES by ozonization advanced oxidation technologies PhD Thesis Jiangsu University, Jiangsu
    [40]
    Li Z G et al 2007 Acta Scien. Circum. 27 522 doi: 10.13671/j.hjkxxb.2007.03.026
    [41]
    Zhu W C et al 2010 Plasma Chem. Plasma P. 30 381 doi: 10.1007/s11090-010-9221-z
    [42]
    Kim D B et al 2009 Curr. Appl Phys. 9 1093 doi: 10.1016/j.cap.2008.12.006
  • Related Articles

    [1]Shuqun WU (吴淑群), Yuxiu CHEN (陈玉秀), Minge LIU (刘敏格), Lu YANG (杨璐), Chaohai ZHANG (张潮海), Shaobin LIU (刘少斌). Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal[J]. Plasma Science and Technology, 2020, 22(11): 115402. DOI: 10.1088/2058-6272/abb077
    [2]Yanfei CHEN (陈妍菲), Bowen FENG (冯博文), Qing ZHANG (张卿), Ruoyu WANG (王若愚), Kostya (Ken) OSTRIKOV (欧思聪), Xiaoxia ZHONG (钟晓霞). Temperature dependence of pattern transitions on water surface in contact with DC microplasmas[J]. Plasma Science and Technology, 2020, 22(5): 55404-055404. DOI: 10.1088/2058-6272/ab66e9
    [3]J KRISTOF, T AOSHIMA, M BLAJAN, K SHIMIZU. Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment[J]. Plasma Science and Technology, 2019, 21(6): 64001-064001. DOI: 10.1088/2058-6272/aafde6
    [4]Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
    [5]Shuqun WU (吴淑群), Fei WU (武菲), Xueyuan LIU (刘雪原), Wen CHEN (陈文), Chang LIU (刘畅), Chaohai ZHANG (张潮海). Investigation on the characteristics of an atmospheric-pressure microplasma plume confined inside a long capillary tube[J]. Plasma Science and Technology, 2018, 20(10): 105402. DOI: 10.1088/2058-6272/aad082
    [6]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [7]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [8]LI Zhanguo(李战国), HU Zhen(胡真), CAO Peng(曹鹏), ZHAO Hongjie(赵红杰). Decontamination of 2-Chloroethyl Ethyl Sulfide by Pulsed Corona Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1054-1058. DOI: 10.1088/1009-0630/16/11/10
    [9]JIN Yong(金涌), LI Baoming(栗保明). Calculation of Plasma Radiation in Electrothermal-Chemical Launcher[J]. Plasma Science and Technology, 2014, 16(1): 50-53. DOI: 10.1088/1009-0630/16/1/11
    [10]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17

Catalog

    Figures(12)  /  Tables(1)

    Article views (65) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return