Advanced Search+
Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
Citation: Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6

Hybrid electric discharge plasma technologies for water decontamination: a short review

Funds: This research is supported by National Natural Science Foundation of China (No. 21577011) and the China Scholarship Council.
More Information
  • Received Date: June 27, 2018
  • Electric discharge plasma (EDP) can efficiently degrade aqueous pollutants by its in situ generated strong oxidative species (·OH, ·O, H2O2, O3, etc) and other physiochemical effects (UV irradiation, shockwaves, local high temperature, etc), but a high energy consumptions limit the application of EDP in water treatment. Some adsorbents, catalysts, and oxidants have been employed for enhancing the degradation of pollutants by discharge plasma. These hybrid plasma technologies offer improved water treatment performance compared to discharge plasma alone. This paper reviews the water decontamination performance and mechanisms of these hybrid plasma technologies, and some suggestions on future water treatment technologies based on discharge plasma are also proposed.
  • [1]
    Oturan M A and Aaron J J 2014 Crit. Rev. Environ. Sci. Technol. 44 2577
    [2]
    Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
    [3]
    Bruggeman P and Leys C 2009 J Phys. D Appl. Phys. 42 053001
    [4]
    Shang K F et al 2016 Jpn. J. Appl. Phys. 55 01AB02
    [5]
    Wang H J et al 2016 Vacuum 128 99
    [6]
    Foster J E 2017 Phys. Plasmas 24 055501
    [7]
    Malik M A, Ghaffar A and Malik S A 2001 Plasma Sources Sci. Technol. 10 82
    [8]
    Sato M et al 2008 IEEE Trans. Ind. Appl. 44 1397
    [9]
    Ruma et al 2018 Catalysts 8 213
    [10]
    ?unka P 2001 Phys. Plasmas 8 2587
    [11]
    Minamitani Y et al 2008 IEEE Trans. Plasma Sci. 36 2586
    [12]
    Du C M et al 2014 IEEE Trans. Plasma Sci. 42 2221
    [13]
    Kodama S et al 2017 Optimization of persistent organic pollutants treatment in wastewater using by nanosecond pulsed non-thermal plasma Proc. of the 2017 IEEE 21st Int. Conf. on Pulsed Power (Brighton, UK: IEEE) 2017
    [14]
    Reddy P M K, Mahammadunnisa S and Subrahmanyam C 2014 Chem. Eng. J. 238 157
    [15]
    Shang K F et al 2017 Chem. Eng. J. 311 378
    [16]
    Bobkova E S et al 2012 Plasma Chem. Plasma Process. 32 703
    [17]
    Zhao Y et al 2017 Plasma Sci. Technol. 19 034001
    [18]
    Gao Q S, Liu Y J and Sun B 2017 Plasma Sci. Technol. 19 115404
    [19]
    Li J et al 2013 High Voltage Eng. 39 2119
    [20]
    Foster J E et al 2018 J. Phys. D Appl. Phys. 51 293001
    [21]
    Lukes P, Locke B R and Brisset J L 2012 Aqueous‐phase chemistry of electrical discharge plasma in water and in gas– liquid environments ed V I Parvulescu, M Magureanu and P Lukes Plasma Chemistry and Catalysis in Gases and Liquids vol 2012 (Weinheim: Wiley) p 243
    [22]
    Vanraes P et al 2015 J. Hazard. Mater. 299 647
    [23]
    Qu G Z et al 2014 Plasma Sci. Technol. 16 608
    [24]
    Qu G Z et al 2009 J. Hazard. Mater. 172 472
    [25]
    Xin L et al 2016 Chemosphere 144 855
    [26]
    Shang K F et al 2015 Ozone Sci. Eng. 37 178
    [27]
    Wang T C et al 2016 Environ. Sci. Pollut. Res. 23 13448
    [28]
    Zhou R S et al 2016 J. Taiwan Inst. Chem. Eng. 68 372
    [29]
    Vanraes P et al 2015 Water Res. 72 361
    [30]
    Knopp G et al 2016 Water Res. 100 580
    [31]
    Hao X L, Zhang X W and Lei L C 2009 Carbon 47 153
    [32]
    Neta P, Huie R E and Ross A B 1988 J. Phys. Chem. Ref. Data 17 1027
    [33]
    Hao X L et al 2007 Chemosphere 66 2185
    [34]
    Zhu X Y et al 2017 J. Chem. Technol. Biotechnol. 92 1970
    [35]
    de Brito Benetoli L O et al 2012 J. Hazard. Mater. 237–238 55
    [36]
    Tiya-Djowe A et al 2015 J. Environ. Chem. Eng. 3 953
    [37]
    Lei L C et al 2007 Plasma Process. Polym. 4 455
    [38]
    Banaschik R et al 2017 Electrochim. Acta 245 539
    [39]
    Babuponnusami A and Muthukumar K 2014 J. Environ. Chem. Eng. 2 557
    [40]
    Reddy P M K et al 2013 Plasma Process. Polym. 10 1010
    [41]
    Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasmas 17 063504
    [42]
    Ghodbane H et al 2015 Open Chem. 13 325
    [43]
    Wang H J et al 2007 J. Hazard. Mater. 141 336
    [44]
    Zhang Y et al 2013 Chem. Eng. J. 215–216 261
    [45]
    Zhang C et al 2017 J. Hazard. Mater. 326 221
    [46]
    Duan J J et al 2015 Plasma Sci. Technol. 17 303
    [47]
    Liu Y A et al 2014 Plasma Chem. Plasma Process. 34 1403
    [48]
    Ghezzar M R et al 2009 J. Hazard. Mater. 164 1266
    [49]
    Wang H J et al 2008 Appl. Catal. B Environ. 83 72
    [50]
    Tijani J O et al 2017 Plasma Chem. Plasma Process. 37 1343
    [51]
    Chen Y D et al 2014 Environ. Sci. Pollut. Res. 21 9948
    [52]
    Sun Y et al 2015 IEEE Trans. Plasma Sci. 43 3234
    [53]
    Duan L J et al 2018 Appl. Catal. B Environ. 221 521
    [54]
    Zhang Y Z et al 2010 Chem. Eng. J. 162 1045
    [55]
    Wang J et al 2016 Chem. Eng. J. 300 36
    [56]
    Zhang G Y et al 2017 J. Hazard. Mater. 323 719
    [57]
    Wen Y Z, Jiang X Z and Liu W P 2002 Plasma Chem. Plasma Process. 22 175
    [58]
    Malik M A et al 2002 Plasma Sources Sci. Technol. 11 236
    [59]
    Bradu C, Magureanu M and Parvulescu V I 2017 J. Hazard. Mater. 336 52
    [60]
    Sun B, Sato M and Clements J S 2000 Environ. Sci. Technol. 34 509
    [61]
    Sugiarto A T et al 2003 J. Electrostatics 58 135
    [62]
    Shang K F et al 2017 Top. Catal. 60 973
    [63]
    Shang K F et al 2017 Plasma Sci. Technol. 19 064017
    [64]
    Wang T C et al 2018 Chem. Eng. J. 346 65
    [65]
    Chen C W et al 2009 Environ. Sci. Technol. 43 4493
    [66]
    de Arruda Guelli Ulson de Souza S M, Bonilla K A S and de Souza A A U 2010 J. Hazard. Mater. 179 35
    [67]
    Yee D C et al 1998 Biotechnol. Bioeng. 59 438
  • Related Articles

    [1]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [2]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [3]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [4]DUAN Jianjin (段剑金), HU Jue (胡觉), ZHANG Chao (张超), WEN Yuanbin (温元斌), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). Plasma Discharge Process in a Pulsed Diaphragm Discharge System[J]. Plasma Science and Technology, 2014, 16(12): 1106-1110. DOI: 10.1088/1009-0630/16/12/05
    [5]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [6]LU Na(鲁娜), FENG Yingchun(冯迎春), LI Jie(李杰), SU Yan(宿艳), SHANG Kefeng(商克峰), WU Yan(吴彦). Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution[J]. Plasma Science and Technology, 2014, 16(2): 128-133. DOI: 10.1088/1009-0630/16/2/08
    [7]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [8]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17
    [9]CAO Hongrui (曹宏睿), LI Shiping (李世平), XU Xiufeng (徐修峰), Yuan Guoliang (袁国梁), YANG Qingwei(杨青巍), YIN Zejie (阴泽杰). A High-Speed Baseline Restorer for Neutron Flux Detection in ITER[J]. Plasma Science and Technology, 2012, 14(11): 1008-1010. DOI: 10.1088/1009-0630/14/11/09
    [10]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
  • Cited by

    Periodical cited type(25)

    1. Shao, K., Song, M., Zhang, X. et al. Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front. Langmuir, 2024, 40(47): 25334-25343. DOI:10.1021/acs.langmuir.4c03815
    2. Chen, B., Liu, Q., Li, X. et al. Synthesis of NO by rotating sliding arc discharge reactor with conical-spiral electrodes. Plasma Science and Technology, 2024, 26(9): 094010. DOI:10.1088/2058-6272/ad6815
    3. Shan, M., Zha, Y., Yang, Y. et al. Morphological characteristics and cleaning effects of collapsing cavitation bubble in fractal cracks. Physics of Fluids, 2024, 36(6): 063337. DOI:10.1063/5.0215048
    4. Shao, K., Song, M., Zhang, X. et al. A review of micro-scale trapped air bubble growth distribution characteristics and thermal mechanical effects in ice | [冰中微尺度受陷气泡生长分布特性与宏观热力影响综述]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56(6): 152-174. DOI:10.11918/202311080
    5. Li, J., Liu, K., Zhang, L. et al. On electro-acoustic characteristics of a marine broadband sparker for seismic exploration. Journal of Oceanology and Limnology, 2024, 42(3): 760-771. DOI:10.1007/s00343-023-3131-4
    6. Gao, C., Kang, Z., Gong, D. et al. Novel method for identifying the stages of discharge underwater based on impedance change characteristic. Plasma Science and Technology, 2024, 26(4): 045503. DOI:10.1088/2058-6272/ad0d56
    7. Zhang, G., Zhang, H.T., Wu, Z.Y. et al. Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions. Experiments in Fluids, 2024, 65(1): 4. DOI:10.1007/s00348-023-03743-3
    8. Cruz, S., Godínez, F.A., Martínez-Alvarado, L.E. et al. Bio-inspired apparatus to produce luminescent cavitation in a rigid walled chamber. PLoS ONE, 2023, 18(12 December): e0293839. DOI:10.1371/journal.pone.0293839
    9. Han, R., Chen, J., Guo, T. A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions, 2023, 8(5): 131. DOI:10.3390/inventions8050131
    10. Yang, Y., Shan, M., Kan, X. et al. Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Heliyon, 2023, 9(10): e20532. DOI:10.1016/j.heliyon.2023.e20532
    11. Phukan, A., Kharphanbuh, S.M., Nath, A. An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles. Physical Chemistry Chemical Physics, 2022, 25(3): 2477-2485. DOI:10.1039/d2cp05561a
    12. Zhang, L.C., Ding, S.D., Pei, Y.L. et al. Experimental study of multi-bubble hydraulic efficiency of spark-generated bubbles. AIP Advances, 2022, 12(9): 095215. DOI:10.1063/5.0100591
    13. Li, C., Nie, B., Zhang, Z. et al. Experimental Study of the Structural Damage to Coal Treated by a High-Voltage Electric Pulse Discharge in Water. Energy and Fuels, 2022, 36(12): 6280-6291. DOI:10.1021/acs.energyfuels.2c01199
    14. Yang, Y., Shan, M., Su, N. et al. Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2022. DOI:10.1016/j.icheatmasstransfer.2022.105988
    15. Shan, M., Yang, Y., Kan, X. et al. Numerical Investigations on Temperature Distribution and Evolution of Cavitation Bubble Collapsed Near Solid Wall. Frontiers in Energy Research, 2022. DOI:10.3389/fenrg.2022.853478
    16. Chen, K., Wan, L., Chen, B. et al. Characteristics of water volatilization and oxides generation by using positive and negative corona. Plasma Science and Technology, 2022, 24(4): 044007. DOI:10.1088/2058-6272/ac567c
    17. Yan, C., Xu, Y., Zhang, P. et al. Investigation of the gas bubble dynamics induced by an electric arc in insulation oil. Plasma Science and Technology, 2022, 24(4): 044003. DOI:10.1088/2058-6272/ac5af9
    18. Liu, Z., Guan, X., Zhang, Y. et al. Experimental Study on the Dynamics of Multiple Bubbles in the Same Phase of Underwater Discharge | [水下放电同相位多气泡动力学实验研究]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(9): 3337-3345. DOI:10.13336/j.1003-6520.hve.20201146
    19. Dai, H., Li, L., Ren, S. et al. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch. Plasma Science and Technology, 2021, 23(6): 064009. DOI:10.1088/2058-6272/abf126
    20. Akhter, M., Mallams, J., Tang, X. et al. Underwater plasma breakdown characteristics with respect to highly pressurized drilling applications. Journal of Applied Physics, 2021, 129(18): 183309. DOI:10.1063/5.0044410
    21. Liu, F., Zhuang, Y., Chu, H. et al. The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry. Plasma Science and Technology, 2021, 23(6): 064002. DOI:10.1088/2058-6272/abe3e1
    22. Jiao, Z., Zhao, J., Han, Y. et al. Dynamics of spark cavitation bubbles in a microchamber. Microfluidics and Nanofluidics, 2021, 25(2): 19. DOI:10.1007/s10404-021-02422-1
    23. Čech, J., Sťahel, P., Ráheľ, J. et al. Mass production of plasma activated water: Case studies of its biocidal effect on algae and cyanobacteria. Water (Switzerland), 2020, 12(11): 1-18. DOI:10.3390/w12113167
    24. Yang, Z., Cao, H., Hao, J. et al. Post-breakdown dielectric recovery characteristics of water for high-repetition-rate switch. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 909-914. DOI:10.1109/TDEI.2020.008507
    25. Yang, Y., Shan, M., Kan, X. et al. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Ultrasonics Sonochemistry, 2020. DOI:10.1016/j.ultsonch.2019.104873

    Other cited types(0)

Catalog

    Article views (272) PDF downloads (965) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return