Citation: | Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6 |
[1] |
Oturan M A and Aaron J J 2014 Crit. Rev. Environ. Sci. Technol. 44 2577
|
[2] |
Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
|
[3] |
Bruggeman P and Leys C 2009 J Phys. D Appl. Phys. 42 053001
|
[4] |
Shang K F et al 2016 Jpn. J. Appl. Phys. 55 01AB02
|
[5] |
Wang H J et al 2016 Vacuum 128 99
|
[6] |
Foster J E 2017 Phys. Plasmas 24 055501
|
[7] |
Malik M A, Ghaffar A and Malik S A 2001 Plasma Sources Sci. Technol. 10 82
|
[8] |
Sato M et al 2008 IEEE Trans. Ind. Appl. 44 1397
|
[9] |
Ruma et al 2018 Catalysts 8 213
|
[10] |
?unka P 2001 Phys. Plasmas 8 2587
|
[11] |
Minamitani Y et al 2008 IEEE Trans. Plasma Sci. 36 2586
|
[12] |
Du C M et al 2014 IEEE Trans. Plasma Sci. 42 2221
|
[13] |
Kodama S et al 2017 Optimization of persistent organic pollutants treatment in wastewater using by nanosecond pulsed non-thermal plasma Proc. of the 2017 IEEE 21st Int. Conf. on Pulsed Power (Brighton, UK: IEEE) 2017
|
[14] |
Reddy P M K, Mahammadunnisa S and Subrahmanyam C 2014 Chem. Eng. J. 238 157
|
[15] |
Shang K F et al 2017 Chem. Eng. J. 311 378
|
[16] |
Bobkova E S et al 2012 Plasma Chem. Plasma Process. 32 703
|
[17] |
Zhao Y et al 2017 Plasma Sci. Technol. 19 034001
|
[18] |
Gao Q S, Liu Y J and Sun B 2017 Plasma Sci. Technol. 19 115404
|
[19] |
Li J et al 2013 High Voltage Eng. 39 2119
|
[20] |
Foster J E et al 2018 J. Phys. D Appl. Phys. 51 293001
|
[21] |
Lukes P, Locke B R and Brisset J L 2012 Aqueous‐phase chemistry of electrical discharge plasma in water and in gas– liquid environments ed V I Parvulescu, M Magureanu and P Lukes Plasma Chemistry and Catalysis in Gases and Liquids vol 2012 (Weinheim: Wiley) p 243
|
[22] |
Vanraes P et al 2015 J. Hazard. Mater. 299 647
|
[23] |
Qu G Z et al 2014 Plasma Sci. Technol. 16 608
|
[24] |
Qu G Z et al 2009 J. Hazard. Mater. 172 472
|
[25] |
Xin L et al 2016 Chemosphere 144 855
|
[26] |
Shang K F et al 2015 Ozone Sci. Eng. 37 178
|
[27] |
Wang T C et al 2016 Environ. Sci. Pollut. Res. 23 13448
|
[28] |
Zhou R S et al 2016 J. Taiwan Inst. Chem. Eng. 68 372
|
[29] |
Vanraes P et al 2015 Water Res. 72 361
|
[30] |
Knopp G et al 2016 Water Res. 100 580
|
[31] |
Hao X L, Zhang X W and Lei L C 2009 Carbon 47 153
|
[32] |
Neta P, Huie R E and Ross A B 1988 J. Phys. Chem. Ref. Data 17 1027
|
[33] |
Hao X L et al 2007 Chemosphere 66 2185
|
[34] |
Zhu X Y et al 2017 J. Chem. Technol. Biotechnol. 92 1970
|
[35] |
de Brito Benetoli L O et al 2012 J. Hazard. Mater. 237–238 55
|
[36] |
Tiya-Djowe A et al 2015 J. Environ. Chem. Eng. 3 953
|
[37] |
Lei L C et al 2007 Plasma Process. Polym. 4 455
|
[38] |
Banaschik R et al 2017 Electrochim. Acta 245 539
|
[39] |
Babuponnusami A and Muthukumar K 2014 J. Environ. Chem. Eng. 2 557
|
[40] |
Reddy P M K et al 2013 Plasma Process. Polym. 10 1010
|
[41] |
Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasmas 17 063504
|
[42] |
Ghodbane H et al 2015 Open Chem. 13 325
|
[43] |
Wang H J et al 2007 J. Hazard. Mater. 141 336
|
[44] |
Zhang Y et al 2013 Chem. Eng. J. 215–216 261
|
[45] |
Zhang C et al 2017 J. Hazard. Mater. 326 221
|
[46] |
Duan J J et al 2015 Plasma Sci. Technol. 17 303
|
[47] |
Liu Y A et al 2014 Plasma Chem. Plasma Process. 34 1403
|
[48] |
Ghezzar M R et al 2009 J. Hazard. Mater. 164 1266
|
[49] |
Wang H J et al 2008 Appl. Catal. B Environ. 83 72
|
[50] |
Tijani J O et al 2017 Plasma Chem. Plasma Process. 37 1343
|
[51] |
Chen Y D et al 2014 Environ. Sci. Pollut. Res. 21 9948
|
[52] |
Sun Y et al 2015 IEEE Trans. Plasma Sci. 43 3234
|
[53] |
Duan L J et al 2018 Appl. Catal. B Environ. 221 521
|
[54] |
Zhang Y Z et al 2010 Chem. Eng. J. 162 1045
|
[55] |
Wang J et al 2016 Chem. Eng. J. 300 36
|
[56] |
Zhang G Y et al 2017 J. Hazard. Mater. 323 719
|
[57] |
Wen Y Z, Jiang X Z and Liu W P 2002 Plasma Chem. Plasma Process. 22 175
|
[58] |
Malik M A et al 2002 Plasma Sources Sci. Technol. 11 236
|
[59] |
Bradu C, Magureanu M and Parvulescu V I 2017 J. Hazard. Mater. 336 52
|
[60] |
Sun B, Sato M and Clements J S 2000 Environ. Sci. Technol. 34 509
|
[61] |
Sugiarto A T et al 2003 J. Electrostatics 58 135
|
[62] |
Shang K F et al 2017 Top. Catal. 60 973
|
[63] |
Shang K F et al 2017 Plasma Sci. Technol. 19 064017
|
[64] |
Wang T C et al 2018 Chem. Eng. J. 346 65
|
[65] |
Chen C W et al 2009 Environ. Sci. Technol. 43 4493
|
[66] |
de Arruda Guelli Ulson de Souza S M, Bonilla K A S and de Souza A A U 2010 J. Hazard. Mater. 179 35
|
[67] |
Yee D C et al 1998 Biotechnol. Bioeng. 59 438
|
[1] | Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379 |
[2] | HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09 |
[3] | FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02 |
[4] | DUAN Jianjin (段剑金), HU Jue (胡觉), ZHANG Chao (张超), WEN Yuanbin (温元斌), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). Plasma Discharge Process in a Pulsed Diaphragm Discharge System[J]. Plasma Science and Technology, 2014, 16(12): 1106-1110. DOI: 10.1088/1009-0630/16/12/05 |
[5] | RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05 |
[6] | LU Na(鲁娜), FENG Yingchun(冯迎春), LI Jie(李杰), SU Yan(宿艳), SHANG Kefeng(商克峰), WU Yan(吴彦). Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution[J]. Plasma Science and Technology, 2014, 16(2): 128-133. DOI: 10.1088/1009-0630/16/2/08 |
[7] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[8] | ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17 |
[9] | CAO Hongrui (曹宏睿), LI Shiping (李世平), XU Xiufeng (徐修峰), Yuan Guoliang (袁国梁), YANG Qingwei(杨青巍), YIN Zejie (阴泽杰). A High-Speed Baseline Restorer for Neutron Flux Detection in ITER[J]. Plasma Science and Technology, 2012, 14(11): 1008-1010. DOI: 10.1088/1009-0630/14/11/09 |
[10] | MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671. |
1. | Shao, K., Song, M., Zhang, X. et al. Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front. Langmuir, 2024, 40(47): 25334-25343. DOI:10.1021/acs.langmuir.4c03815 | |
2. | Chen, B., Liu, Q., Li, X. et al. Synthesis of NO by rotating sliding arc discharge reactor with conical-spiral electrodes. Plasma Science and Technology, 2024, 26(9): 094010. DOI:10.1088/2058-6272/ad6815 | |
3. | Shan, M., Zha, Y., Yang, Y. et al. Morphological characteristics and cleaning effects of collapsing cavitation bubble in fractal cracks. Physics of Fluids, 2024, 36(6): 063337. DOI:10.1063/5.0215048 | |
4. | Shao, K., Song, M., Zhang, X. et al. A review of micro-scale trapped air bubble growth distribution characteristics and thermal mechanical effects in ice | [冰中微尺度受陷气泡生长分布特性与宏观热力影响综述]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56(6): 152-174. DOI:10.11918/202311080 | |
5. | Li, J., Liu, K., Zhang, L. et al. On electro-acoustic characteristics of a marine broadband sparker for seismic exploration. Journal of Oceanology and Limnology, 2024, 42(3): 760-771. DOI:10.1007/s00343-023-3131-4 | |
6. | Gao, C., Kang, Z., Gong, D. et al. Novel method for identifying the stages of discharge underwater based on impedance change characteristic. Plasma Science and Technology, 2024, 26(4): 045503. DOI:10.1088/2058-6272/ad0d56 | |
7. | Zhang, G., Zhang, H.T., Wu, Z.Y. et al. Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions. Experiments in Fluids, 2024, 65(1): 4. DOI:10.1007/s00348-023-03743-3 | |
8. | Cruz, S., Godínez, F.A., Martínez-Alvarado, L.E. et al. Bio-inspired apparatus to produce luminescent cavitation in a rigid walled chamber. PLoS ONE, 2023, 18(12 December): e0293839. DOI:10.1371/journal.pone.0293839 | |
9. | Han, R., Chen, J., Guo, T. A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions, 2023, 8(5): 131. DOI:10.3390/inventions8050131 | |
10. | Yang, Y., Shan, M., Kan, X. et al. Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Heliyon, 2023, 9(10): e20532. DOI:10.1016/j.heliyon.2023.e20532 | |
11. | Phukan, A., Kharphanbuh, S.M., Nath, A. An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles. Physical Chemistry Chemical Physics, 2022, 25(3): 2477-2485. DOI:10.1039/d2cp05561a | |
12. | Zhang, L.C., Ding, S.D., Pei, Y.L. et al. Experimental study of multi-bubble hydraulic efficiency of spark-generated bubbles. AIP Advances, 2022, 12(9): 095215. DOI:10.1063/5.0100591 | |
13. | Li, C., Nie, B., Zhang, Z. et al. Experimental Study of the Structural Damage to Coal Treated by a High-Voltage Electric Pulse Discharge in Water. Energy and Fuels, 2022, 36(12): 6280-6291. DOI:10.1021/acs.energyfuels.2c01199 | |
14. | Yang, Y., Shan, M., Su, N. et al. Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2022. DOI:10.1016/j.icheatmasstransfer.2022.105988 | |
15. | Shan, M., Yang, Y., Kan, X. et al. Numerical Investigations on Temperature Distribution and Evolution of Cavitation Bubble Collapsed Near Solid Wall. Frontiers in Energy Research, 2022. DOI:10.3389/fenrg.2022.853478 | |
16. | Chen, K., Wan, L., Chen, B. et al. Characteristics of water volatilization and oxides generation by using positive and negative corona. Plasma Science and Technology, 2022, 24(4): 044007. DOI:10.1088/2058-6272/ac567c | |
17. | Yan, C., Xu, Y., Zhang, P. et al. Investigation of the gas bubble dynamics induced by an electric arc in insulation oil. Plasma Science and Technology, 2022, 24(4): 044003. DOI:10.1088/2058-6272/ac5af9 | |
18. | Liu, Z., Guan, X., Zhang, Y. et al. Experimental Study on the Dynamics of Multiple Bubbles in the Same Phase of Underwater Discharge | [水下放电同相位多气泡动力学实验研究]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(9): 3337-3345. DOI:10.13336/j.1003-6520.hve.20201146 | |
19. | Dai, H., Li, L., Ren, S. et al. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch. Plasma Science and Technology, 2021, 23(6): 064009. DOI:10.1088/2058-6272/abf126 | |
20. | Akhter, M., Mallams, J., Tang, X. et al. Underwater plasma breakdown characteristics with respect to highly pressurized drilling applications. Journal of Applied Physics, 2021, 129(18): 183309. DOI:10.1063/5.0044410 | |
21. | Liu, F., Zhuang, Y., Chu, H. et al. The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry. Plasma Science and Technology, 2021, 23(6): 064002. DOI:10.1088/2058-6272/abe3e1 | |
22. | Jiao, Z., Zhao, J., Han, Y. et al. Dynamics of spark cavitation bubbles in a microchamber. Microfluidics and Nanofluidics, 2021, 25(2): 19. DOI:10.1007/s10404-021-02422-1 | |
23. | Čech, J., Sťahel, P., Ráheľ, J. et al. Mass production of plasma activated water: Case studies of its biocidal effect on algae and cyanobacteria. Water (Switzerland), 2020, 12(11): 1-18. DOI:10.3390/w12113167 | |
24. | Yang, Z., Cao, H., Hao, J. et al. Post-breakdown dielectric recovery characteristics of water for high-repetition-rate switch. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 909-914. DOI:10.1109/TDEI.2020.008507 | |
25. | Yang, Y., Shan, M., Kan, X. et al. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Ultrasonics Sonochemistry, 2020. DOI:10.1016/j.ultsonch.2019.104873 |