Citation: | Sai SRIKAR, Tinku KUMAR, Degala Venkata KIRAN, Reetesh Kumar GANGWAR. Non-invasive optical characterization and estimation of Zn porosity in gas tungsten arc welding of Fe–Al joints using CR model and OES measurements[J]. Plasma Science and Technology, 2023, 25(11): 115503. DOI: 10.1088/2058-6272/acddb7 |
In this study, we employed a non-invasive approach based on the collisional radiative (CR) model and optical emission spectroscopy (OES) measurements for the characterization of gas tungsten arc welding (GTAW) discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints. The OES measurements were recorded as a function of weld current, welding speed, and input waveform. The OES measurements revealed significant line emissions from Zn-Ⅰ in 460–640 nm and Ar-Ⅰ in 680–800 nm wavelength ranges in all experimental settings. The OES coupled CR model approach for Zn-Ⅰ line emission enabled the simultaneous determination of both essential discharge parameters i.e. electron temperature and electron density. Further, these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-Ⅰ emission lines using Ar as actinometer gas. The OES-actinometry results were in good agreement with porosity data derived from an independent approach, i.e. x-ray radiography images. The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.
SS is thankful to the Ministry of Human Resources and Development (MHRD), Government of India, for providing HTRA fellowship. The authors gratefully acknowledge the support by the SERB, India, for listed Grants (Nos. CRG/2018/000419, CVD/2020/000458, and SB/S2/RJN-093/2015) Core Research Grant, India (No. CRG/2020/005089) and IIT Tirupati, India (No. MEE/18-19/008/NFSG/DEGA).
Supplementary material for this article is available https://doi.org/10.1088/2058-6272/acddb7
[1] |
Ribic B, Burgardt P and DebRoy T 2011 J. Appl. Phys. 109 083301 doi: 10.1063/1.3552307
|
[2] |
Nikolić M et al 2021 J. Phys. D: Appl. Phys. 54 275203 doi: 10.1088/1361-6463/abf61c
|
[3] |
Allabakshi S M et al 2022 Sep. Purif. Technol. 296 121344 doi: 10.1016/j.seppur.2022.121344
|
[4] |
Miller W S et al 2000 Mater. Sci. Eng. A 280 37 doi: 10.1016/S0921-5093(99)00653-X
|
[5] |
Kumar T et al 2022 Mater. Lett. 306 130897 doi: 10.1016/j.matlet.2021.130897
|
[6] |
Mamat S B et al 2020 Weld. World 64 857 doi: 10.1007/s40194-020-00879-2
|
[7] |
Sravanthi S S et al 2019 Mater. Manuf. Process. 34 1627 doi: 10.1080/10426914.2019.1605180
|
[8] |
Kumar T et al 2020 J. Manuf. Process. 59 378 doi: 10.1016/j.jmapro.2020.09.057
|
[9] |
Milberg J and Trautmann A 2009 Prod. Eng. 3 9 doi: 10.1007/s11740-008-0140-2
|
[10] |
Poolperm P, Nakkiew W and Naksuk N 2020 Mater. Res. Express 7 056518 doi: 10.1088/2053-1591/ab906a
|
[11] |
Lee H, Ji C and Yu J 2018 J. Mech. Sci. Technol. 32 4335 doi: 10.1007/s12206-018-0831-3
|
[12] |
Toropchin A et al 2014 J. Phys. : Conf. Ser. 550 012004 doi: 10.1088/1742-6596/550/1/012004
|
[13] |
Ahsan R U et al 2016 Sci. Technol. Weld. Joining 21 209 doi: 10.1179/1362171815Y.0000000084
|
[14] |
Zhao H Y et al 2016 J. Laser Appl. 28 032011 doi: 10.2351/1.4953065
|
[15] |
Chang B H et al 2015 Metall. Mater. Trans. B 46 906 doi: 10.1007/s11663-014-0242-5
|
[16] |
Goett G et al 2020 J. Phys. D: Appl. Phys. 53 435208 doi: 10.1088/1361-6463/aba01f
|
[17] |
Mirapeix J M et al 2006 Opt. Eng. 45 083002 doi: 10.1117/1.2336416
|
[18] |
Valdiande J J et al 2022 Spectrochim. Acta B 194 106474 doi: 10.1016/j.sab.2022.106474
|
[19] |
Nomura K et al 2017 J. Phys. D: Appl. Phys. 50 425205 doi: 10.1088/1361-6463/aa8793
|
[20] |
Navrátil Z et al 2007 J. Phys. D: Appl. Phys. 40 1037 doi: 10.1088/0022-3727/40/4/018
|
[21] |
Ananthanarasimhan J et al 2021 J. Appl. Phys. 129 223301 doi: 10.1063/5.0044014
|
[22] |
Baghel S S et al 2021 Plasma Sources Sci. Technol. 30 055010 doi: 10.1088/1361-6595/abe1d3
|
[23] |
Gupta S, Gangwar R K and Srivastava R 2019 Plasma Sources Sci. Technol. 28 095009 doi: 10.1088/1361-6595/ab3a22
|
[24] |
Priti, Gangwar R K and Srivastava R 2018 Phys. Plasmas 25 043517 doi: 10.1063/1.5018347
|
[25] |
Sun L X and Yu H B 2009 Talanta 79 388 doi: 10.1016/j.talanta.2009.03.066
|
[26] |
Li T Q et al 2019 Anal. Chim. Acta 1058 39 doi: 10.1016/j.aca.2019.01.016
|
[27] |
Fantz U 2006 Plasma Sources Sci. Technol. 15 S137 doi: 10.1088/0963-0252/15/4/S01
|
[28] |
Maaloul L and Stafford L 2013 J. Vacuum Sci. Technol. A 31 061306 doi: 10.1116/1.4821186
|
[29] |
Nguyen T et al 2021 J. Phys. D: Appl. Phys. 54 405203 doi: 10.1088/1361-6463/ac10a2
|
[30] |
Kramida A 2023 NIST Atomic Spectra Database (version 5. 10), [Online]. Available: https://physics.nist.gov/asd
|
[31] |
Gangwar R K et al 2012 J. Appl. Phys. 111 053307 doi: 10.1063/1.3693043
|
[32] |
Gangwar R K et al 2010 Phys. Rev. 82 032710 A
|
[33] |
Gangwar R K et al 2016 Plasma Sources Sci. Technol. 25 035025 doi: 10.1088/0963-0252/25/3/035025
|
[34] |
Mohanty U K et al 2021 Case Stud. Thermal Eng. 25 100885 doi: 10.1016/j.csite.2021.100885
|
[35] |
Abbas M et al 2014 Tech. J. Univ. Eng. Technol. Taxila 19 35
|
[36] |
Mvola B, Kah P and Layus P 2018 Int. J. Adv. Manuf. Technol. 96 4243 doi: 10.1007/s00170-018-1879-z
|
[37] |
Siepa S et al 2014 J. Phys. D: Appl. Phys. 47 445201 doi: 10.1088/0022-3727/47/44/445201
|
[38] |
Cui R L et al 2020 Plasma Sources Sci. Technol. 29 015018 doi: 10.1088/1361-6595/ab56dc
|
[39] |
Hanna A R and Fisher E R 2020 J. Vacuum Sci. Technol. 38 020806 doi: 10.1116/1.5141844
|
[40] |
Boffard J B et al 2012 J. Phys. D: Appl. Phys. 45 045201 doi: 10.1088/0022-3727/45/4/045201
|
[41] |
Allabakshi S M et al 2023 J. Hazard. Mater. 446 130639 doi: 10.1016/j.jhazmat.2022.130639
|
[1] | Qinghu YANG, Zhipeng CHEN, Zhigang HAO, Yangming ZHAO, Xin XU, Shuhao LI, Jie YANG, Wei YAN, Zhonghe JIANG, Zhongyong CHEN, Nengchao WANG, Zhoujun YANG, Yuan PAN, Yonghua DING, the J-TEXT Team. Design and first result of combined Langmuir-magnetic probe on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(5): 054005. DOI: 10.1088/2058-6272/ac41bf |
[2] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[3] | Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43 |
[4] | P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968 |
[5] | M RACK, D HÖSCHEN, D REITER, B UNTERBERG, J W COENEN, S BREZINSEK, O NEUBAUER, S BOZHENKOV, G CZYMEK, Y LIANG, M HUBENY, Ch LINSMEIER, the Wendelstein -X Team. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology[J]. Plasma Science and Technology, 2018, 20(5): 54002-054002. DOI: 10.1088/2058-6272/aaac78 |
[6] | S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01 |
[7] | ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01 |
[8] | KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02 |
[9] | ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546. |
[10] | YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522. |
1. | Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1 |
2. | Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb |
3. | Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7 |
4. | Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718 |
5. | Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361 |
6. | Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f |
7. | Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596 |