Advanced Search+
Junwei JIA, Zhifeng LIU, Congyuan PAN, Huaqin XUE. Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods[J]. Plasma Science and Technology, 2024, 26(2): 025507. DOI: 10.1088/2058-6272/ad1045
Citation: Junwei JIA, Zhifeng LIU, Congyuan PAN, Huaqin XUE. Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods[J]. Plasma Science and Technology, 2024, 26(2): 025507. DOI: 10.1088/2058-6272/ad1045

Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods

More Information
  • Author Bio:

    Junwei JIA: jjw2014@mail.ustc.edu.cn

  • Corresponding author:

    Junwei JIA, jjw2014@mail.ustc.edu.cn

  • Received Date: June 05, 2023
  • Revised Date: November 23, 2023
  • Accepted Date: November 27, 2023
  • Available Online: January 15, 2024
  • Published Date: February 04, 2024
  • The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy (LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve (CC) method and the partial least squares regression (PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient (R2), average relative error (ARE), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP). The results demonstrate that the PLSR method significantly improved both R2 for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.

  • This work is supported by funding for research activities of postdoctoral researchers in Anhui Province and special funds for developing Anhui Province’s industrial “three highs” and high-tech industries.

  • [1]
    Lohmeier S et al 2021 J. S. Afr. Inst. Min. Metall. 121 129
    [2]
    Jiang L F et al 2022 J. Phys.: Conf. Ser. 2268 012006
    [3]
    Chen J et al 2022 JOM 74 185 doi: 10.1007/s11837-021-04920-7
    [4]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A doi: 10.1366/000370210793561691
    [5]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
    [6]
    Ma S X et al 2023 J. Hazard. Mater. 443 130188 doi: 10.1016/j.jhazmat.2022.130188
    [7]
    Elhamdaoui I et al 2022 J. Anal. At. Spectrom. 37 2537 doi: 10.1039/D2JA00120A
    [8]
    Bol'shakov A A et al 2021 Spectrochim. Acta Part B 179 106094 doi: 10.1016/j.sab.2021.106094
    [9]
    Aints M et al 2018 J. Spectrosc. 2018 4605925
    [10]
    Myakalwar A K et al 2021 Minerals 11 1073
    [11]
    Meng D S et al 2017 Spectrochim. Acta Part B 137 39 doi: 10.1016/j.sab.2017.09.011
    [12]
    Sun L X et al 2018 Spectrochim. Acta Part B 142 29 doi: 10.1016/j.sab.2018.02.005
    [13]
    Zeng G D et al 2022 Plasma Sci. Technol. 24 084009 doi: 10.1088/2058-6272/ac72e3
    [14]
    Petersson J, Gilbert-Gatty M and Bengtson A 2020 J. Anal. At. Spectrom. 35 1848 doi: 10.1039/D0JA00188K
    [15]
    Hai R et al 2021 Appl. Phys. B 127 37
    [16]
    Dai Y J et al 2021 J. Anal. At. Spectrom. 36 1634 doi: 10.1039/D1JA00082A
    [17]
    Cui M C et al 2022 Spectrochim. Acta Part B 191 106398 doi: 10.1016/j.sab.2022.106398
    [18]
    Ahmed N et al 2022 Anal. Lett. 55 2239 doi: 10.1080/00032719.2022.2052307
    [19]
    François E et al 2020 Spectrochim. Acta Part B 170 105921 doi: 10.1016/j.sab.2020.105921
    [20]
    Yoon S et al 2021 Appl. Sci. 11 7154 doi: 10.3390/app11157154
    [21]
    Kashiwakura S and Wagatsuma K 2020 ISIJ Int. 60 1245 doi: 10.2355/isijinternational.ISIJINT-2019-549
    [22]
    Brinkmann P et al 2023 Minerals 13 113
    [23]
    Pan C Y et al 2021 Metall. Anal. 41 41 (in Chinese)
    [24]
    Han Z Y et al 2015 Spectrosc. Spect. Anal. 35 304 (in Chinese)
    [25]
    Kramida A et al 2020 NIST atomic spectra database (version 5.8) Gaithersburg: National Institute of Standards and Technology
    [26]
    Sato T et al 2019 Plasma Sci. Technol. 21 034021 doi: 10.1088/2058-6272/aaf5ef
  • Related Articles

    [1]Mingxiang GAO, Baojun WANG, Bin GUO. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas[J]. Plasma Science and Technology, 2023, 25(9): 095001. DOI: 10.1088/2058-6272/acd09e
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]M SHAHMANSOURI, A P MISRA. Surface plasmon oscillations in a semi-bounded semiconductor plasma[J]. Plasma Science and Technology, 2018, 20(2): 25001-025001. DOI: 10.1088/2058-6272/aa9213
    [4]Xiaoqiong WEN (温小琼), Qian LI (李倩), Jingsen LI (李井森), Chunsheng REN (任春生). Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water[J]. Plasma Science and Technology, 2017, 19(8): 85401-085401. DOI: 10.1088/2058-6272/aa6bf0
    [5]ZHU Jun (祝俊). Dispersion Relation of Linear Waves in Quantum Magnetoplasmas[J]. Plasma Science and Technology, 2016, 18(7): 703-707. DOI: 10.1088/1009-0630/18/7/01
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [8]XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
    [9]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [10]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
  • Cited by

    Periodical cited type(6)

    1. Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001. DOI:10.35848/1347-4065/ad82c4
    2. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    3. Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001. DOI:10.1088/2058-6272/acd09e
    4. Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226. DOI:10.3390/s23010226
    5. Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101. DOI:10.1063/5.0097873
    6. Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720. DOI:10.3390/app11114720

    Other cited types(0)

Catalog

    Figures(6)  /  Tables(4)

    Article views (36) PDF downloads (16) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return