Citation: | A. PONOMARENKO, A. YASHIN, V. GUSEV, E. KISELEV, G. KURSKIEV, V. MINAEV, Y. PETROV, N. SAKHAROV, P. SHCHEGOLEV, E. TKACHENKO, N. ZHILTSOV. First results of turbulence investigation on Globus-M2 using radial correlation Doppler reflectometry[J]. Plasma Science and Technology, 2024, 26(10): 105101. DOI: 10.1088/2058-6272/ad5fe5 |
The first results of investigation of the turbulence structure using Doppler backscattering (DBS) on the Globus-M2 tokamak are presented. A one-channel DBS system with a variable probing frequency within the 18–26 GHz range was installed to investigate the edge plasma at normalized minor radii ρ= 0.9–1.1. Radial correlation Doppler reflectometry was used to study the changes in turbulence eddies after the LH transition. Correlation analysis was applied to the phase derivative of complex in-phase and quadrature (IQ) signals of the DBS diagnostic as it contains information about the poloidal plasma rotation velocity. In L-mode, the radial correlation length Lr is estimated to be 3 cm and after transition to H-mode reduces to approximately 2 cm. Gyrokinetic modelling in a linear local approximation using code GENE indicates that the instability with positive growth rate at the normalized minor radius ρ= 0.75 in L-mode and H-mode on Globus-M2 was the ion temperature gradient (ITG) mode.
The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Contract in the Field of Science (No. FSEG-2024-0005), using the Federal Joint Research Center “Material science and characterization in advanced technology” of Ioffe Institute, including the unique scientific facility “Spherical tokamak Globus-M”. The results of the modeling were obtained using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (www.scc.spbstu.ru).
[1] |
Scott B D 2007 Plasma Phys. Control. Fusion 49 S25 doi: 10.1088/0741-3335/49/7/S02
|
[2] |
Boedo J et al 2000 Nucl. Fusion 40 1397 doi: 10.1088/0029-5515/40/7/309
|
[3] |
Kakati B et al 2017 Phys. Plasmas 24 052306 doi: 10.1063/1.4982810
|
[4] |
Wagner F 2007 Plasma Phys. Control. Fusion 49 B1 doi: 10.1088/0741-3335/49/12B/S01
|
[5] |
Terry P W 2000 Rev. Mod. Phys. 72 109 doi: 10.1103/RevModPhys.72.109
|
[6] |
Kaye S M, Connor J W and Roach C M 2021 Plasma Phys. Control. Fusion 63 123001 doi: 10.1088/1361-6587/ac2b38
|
[7] |
Kurskiev G S et al 2022 Nucl. Fusion 62 016011 doi: 10.1088/1741-4326/ac38c9
|
[8] |
Kurskiev G S et al 2022 Nucl. Fusion 62 104002 doi: 10.1088/1741-4326/ac881d
|
[9] |
Ponomarenko A et al 2023 Sensors 23 830 doi: 10.3390/s23020830
|
[10] |
Petrov Y V et al 2022 Nucl. Fusion 62 042009 doi: 10.1088/1741-4326/ac27c7
|
[11] |
Shchegolev P B et al 2023 Plasma Phys. Rep. 49 1501 doi: 10.1134/S1063780X23601098
|
[12] |
Solokha V V et al 2023 Plasma Phys. Rep. 49 419 doi: 10.1134/S1063780X23600184
|
[13] |
Conway G D et al 2004 Plasma Phys. Control. Fusion 46 951 doi: 10.1088/0741-3335/46/6/003
|
[14] |
Schirmer J et al 2006 Nucl. Fusion 46 S780 doi: 10.1088/0029-5515/46/9/S13
|
[15] |
Estrada T, Happel T and Blanco E 2012 Nucl. Fusion 52 082002 doi: 10.1088/0029-5515/52/8/082002
|
[16] |
Yashin A Y et al 2014 Nucl. Fusion 54 114015 doi: 10.1088/0029-5515/54/11/114015
|
[17] |
Yashin A Y et al 2018 Nucl. Fusion 58 112009 doi: 10.1088/1741-4326/aac4d8
|
[18] |
Grover O et al 2024 Nucl. Fusion 64 026001 doi: 10.1088/1741-4326/ad0eae
|
[19] |
Yashin A Y et al 2021 Nucl. Fusion 61 092001 doi: 10.1088/1741-4326/ac1297
|
[20] |
Bulanin V V et al 2021 Tech. Phys. Lett. 47 197 doi: 10.1134/S1063785021020206
|
[21] |
Yashin A et al 2023 Appl. Sci. 13 3430 doi: 10.3390/app13063430
|
[22] |
Ponomarenko A et al 2024 Nucl. Fusion 64 022001 doi: 10.1088/1741-4326/ad0ead
|
[23] |
Bulanin V V et al 2019 Nucl. Fusion 59 096026 doi: 10.1088/1741-4326/ab2cdf
|
[24] |
Yashin A Y et al 2022 J. Instrum. 17 C01023 doi: 10.1088/1748-0221/17/01/C01023
|
[25] |
Bulanin V V et al 2021 Rev. Sci. Instrum. 92 033539 doi: 10.1063/5.0030307
|
[26] |
Yashin A Y et al 2015 J. Instrum. 10 P10023 doi: 10.1088/1748-0221/10/10/P10023
|
[27] |
Gusakov E, Irzak M and Popov A 2014 Plasma Phys. Control. Fusion 56 025009 doi: 10.1088/0741-3335/56/2/025009
|
[28] |
Krutkin O L, Gusakov E Z and Heuraux S 2020 Plasma Phys. Control. Fusion 62 045004 doi: 10.1088/1361-6587/ab71f5
|
[29] |
Schirmer J et al 2007 Plasma Phys. Control. Fusion 49 1019 doi: 10.1088/0741-3335/49/7/006
|
[30] |
Ruiz J R et al 2022 Plasma Phys. Control. Fusion 64 055019 doi: 10.1088/1361-6587/ac5916
|
[31] |
Gusakov E Z et al 2017 Phys. Plasmas 24 022119 doi: 10.1063/1.4976545
|
[32] |
Kirk A et al 2006 Phys. Rev. Lett. 96 185001 doi: 10.1103/PhysRevLett.96.185001
|
[33] |
Yashin A et al 2022 Sensors 22 9441 doi: 10.3390/s22239441
|
[34] |
Dannert T and Jenko F 2005 Phys. Plasmas 12 072309 doi: 10.1063/1.1947447
|
[1] | Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0 |
[2] | WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04 |
[3] | WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13 |
[4] | JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08 |
[5] | HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03 |
[6] | K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01 |
[7] | LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17 |
[8] | LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384. |
[9] | YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315. |
[10] | Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49. |
1. | Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045 | |
2. | Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931 | |
3. | Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667 | |
4. | Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866 | |
5. | Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3 | |
6. | Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c | |
7. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56 | |
8. | Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582 | |
9. | Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927 | |
10. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696 | |
11. | Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002 | |
12. | Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716 | |
13. | Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274 | |
14. | Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984 | |
15. | Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622 | |
16. | Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb | |
17. | Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844 | |
18. | Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292 | |
19. | Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562 | |
20. | Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433 | |
21. | Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502 | |
22. | Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111 | |
23. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |