Citation: | Jian SHEN, Fajun WANG, Wei WEI, Jie MA, Junjie WANG, Liangliang LIN. Surface modification of fabrics using dielectric barrier discharge plasma for improved antifouling performance[J]. Plasma Science and Technology, 2025, 27(1): 014001. DOI: 10.1088/2058-6272/ad8da6 |
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort, softness and stretchability. Herein, an atmospheric pressure dielectric barrier discharge (DBD) plasma method is demonstrated for the processing of silk fabrics using 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDS) as the precursor. The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage. Meanwhile, the gas temperature is rather low during the whole processing procedure, suggesting the non-equilibrium characteristics of DBD plasma. The influence on fabrics of the processing parameters (PFDS concentration, plasma treatment time and plasma discharge power) was systematically investigated. An optimum processing condition was determined to be a PFDS concentration of 8wt%, a plasma processing time of 40 s and a plasma power of 11.87 W. However, with prolonged plasma processing time or enhanced plasma power, the plasma-grafted PFDS films could be degraded. Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness. As a result, the surface energy of the fabrics was reduced, accompanied by improved water and oil repellency as well as enhanced antifouling performance. Besides, the plasma-grafted PFDS films also had good durability and stability. By extending the method to polyester and wool against different oil-/water-based stains, the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics. This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
We would like to acknowledge the financial support from National Natural Science Foundation of China (Nos. 22078125 and 52004102) and Postdoctoral Science Foundation of China (No. 2023M741472).
[1] |
Guan L Y, Shi M W and Long J J 2023 J. CO2 Util. 67 102316 doi: 10.1016/j.jcou.2022.102316
|
[2] |
Xu Q B et al 2022 Fibers Polym. 23 944 doi: 10.1007/s12221-022-4624-z
|
[3] |
Volgare M et al 2021 Sci. Rep. 11 19479 doi: 10.1038/s41598-021-98836-6
|
[4] |
Cai G Q et al 2016 J. Surfactants Deterg. 19 901 doi: 10.1007/s11743-016-1823-x
|
[5] |
Shahidi S, Wiener J and Ghoranneviss M 2013 Surface modification methods for improving the dyeability of textile fabrics In: Günay M Eco-Friendly Textile Dyeing and Finishing Rijeka: InTech 2013: 270
|
[6] |
Ferrero F, Periolatto M and Tempestini L 2017 Coatings 7 60 doi: 10.3390/coatings7050060
|
[7] |
Kowalski M et al 2022 Materials 15 3825 doi: 10.3390/ma15113825
|
[8] |
Ahmad R, Hamid R and Osman S A 2019 Adv. Civ. Eng. 2019 5185806 doi: 10.1155/2019/5185806
|
[9] |
Lin H P et al 2020 Polymers 12 833 doi: 10.3390/polym12040833
|
[10] |
Morent R et al 2011 Plasma Process. Polym. 8 171 doi: 10.1002/ppap.201000153
|
[11] |
Lin L L and Wang Q 2015 Plasma Chem. Plasma Process. 35 925 doi: 10.1007/s11090-015-9640-y
|
[12] |
Rui L C et al 2022 Chem. Eng. Res. Des. 186 125 doi: 10.1016/j.cherd.2022.07.038
|
[13] |
Xiong C F et al 2024 Appl. Surf. Sci. Adv. 21 100594 doi: 10.1016/j.apsadv.2024.100594
|
[14] |
Sidding E A A et al 2020 Plasma Sci. Technol. 22 055503 doi: 10.1088/2058-6272/ab65dd
|
[15] |
Xiong C F et al 2023 Surf. Interfaces 37 102758 doi: 10.1016/j.surfin.2023.102758
|
[16] |
Dargaville T R et al 2003 Prog. Polym. Sci. 28 1355 doi: 10.1016/S0079-6700(03)00047-9
|
[17] |
Henry B J et al 2018 Integr. Environ. Asses. 14 316 doi: 10.1002/ieam.4035
|
[18] |
Tao Y M et al 2023 Plasma Sci. Technol. 25 085504 doi: 10.1088/2058-6272/acc14c
|
[19] |
Jiang H et al 2013 IEEE Trans. Diel. Elect. Insul. 20 1101 doi: 10.1109/TDEI.2013.6571423
|
[20] |
Crintea D L et al 2009 J. Phys. D: Appl. Phys. 42 045208 doi: 10.1088/0022-3727/42/4/045208
|
[21] |
Zhang Z Y et al 2024 React. Chem. Eng. 9 1541 doi: 10.1039/D4RE00011K
|
[22] |
Schuman T and Wolf R A 2020 Surf. Interfaces 18 100461 doi: 10.1016/j.surfin.2020.100461
|
[23] |
Molina R et al 2017 ACS Appl. Mater. Inter. 9 5513 doi: 10.1021/acsami.6b15812
|
[24] |
Zhang Y L et al 2016 Surf. Coat. Technol. 296 104 doi: 10.1016/j.surfcoat.2016.04.036
|
[25] |
Lin L L et al 2021 J. CO2 Util. 53 101752 doi: 10.1016/j.jcou.2021.101752
|
[26] |
Zhang X Y et al 2023 J. Mater. Res. Technol. 27 4213 doi: 10.1016/j.jmrt.2023.10.302
|
[27] |
Zhou W, Chen X and Shao Z Z 2006 Prog. Chem. 18 1514 (in Chinese) doi: 10.3321/j.issn:1005-281X.2006.11.014
|
[28] |
Wang S D and Zhang Y Z 2014 Fibers Polym. 15 1129 doi: 10.1007/s12221-014-1129-4
|
[29] |
Chen L et al 2015 RSC Adv. 5 40148 doi: 10.1039/C5RA00910C
|
[30] |
Medina-Dzul K et al 2015 J. Polym. Res. 22 45 doi: 10.1007/s10965-015-0677-7
|
[31] |
Song Y J et al 2023 Plasma Sci. Technol. 25 114001 doi: 10.1088/2058-6272/acd32b
|
[32] |
Lee J et al 2013 Materials 6 2007 doi: 10.3390/ma6052007
|
[33] |
Colin M et al 2023 Carbon 202 137 doi: 10.1016/j.carbon.2022.10.082
|
[34] |
Hozumi A, Kim B and McCarthy T J 2009 Langmuir 25 6834 doi: 10.1021/la804127z
|
[35] |
Hodak S K et al 2008 Appl. Surf. Sci. 254 4744 doi: 10.1016/j.apsusc.2008.01.110
|
[36] |
Mehraz L and Nouri M 2020 J. Nat. Fibers 17 371 doi: 10.1080/15440478.2018.1492492
|
[37] |
Hassan M M 2019 Colloids Surf. A: Physicochem. Eng. Aspects 581 123819 doi: 10.1016/j.colsurfa.2019.123819
|
[38] |
Wang J S et al 2018 Membranes 8 56 doi: 10.3390/membranes8030056
|
[39] |
Lin L L et al 2022 J. Taiwan Inst. Chem. Eng. 138 104467 doi: 10.1016/j.jtice.2022.104467
|
[40] |
Hayes L J 1976 J. Fluorine Chem. 8 69 doi: 10.1016/S0022-1139(00)82900-0
|
[41] |
Starostin S A et al 2015 Plasma Process. Polym. 12 545 doi: 10.1002/ppap.201400194
|
[42] |
Kazemi M and Taghvaei H 2021 Sep. Purif. Technol. 260 118236 doi: 10.1016/j.seppur.2020.118236
|
[43] |
Khan T M, Alves G A S and Iqbal A 2023 Sci. Rep. 13 77 doi: 10.1038/s41598-022-27294-5
|
[44] |
Liang C et al 2020 Sep. Purif. Technol. 235 116141 doi: 10.1016/j.seppur.2019.116141
|
[45] |
Lin L L et al 2021 Chem. Eng. J. 417 129355 doi: 10.1016/j.cej.2021.129355
|
[1] | Cheng FENG (冯诚), Yibo HU (胡一波), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅), Wenli WANG (王文利). The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric[J]. Plasma Science and Technology, 2020, 22(1): 15503-015503. DOI: 10.1088/2058-6272/ab4c4e |
[2] | Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379 |
[3] | XIN Qing (辛青), LI Zhongjian (李中坚), LEI Lecheng (雷乐成), YANG Bin (杨彬). Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process[J]. Plasma Science and Technology, 2016, 18(9): 943-949. DOI: 10.1088/1009-0630/18/9/11 |
[4] | LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07 |
[5] | CHANG Zhengshi(常正实), YAO Congwei(姚聪伟), MU Haibao(穆海宝), ZHANG Guanjun(张冠军). Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium[J]. Plasma Science and Technology, 2014, 16(1): 83-88. DOI: 10.1088/1009-0630/16/1/18 |
[6] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
[7] | S. SHAHIDI, M. GHORANNEVISS. Sterilization of Cotton Fabrics Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(10): 1031-1033. DOI: 10.1088/1009-0630/15/10/13 |
[8] | A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12 |
[9] | LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09 |
[10] | ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627. |
1. | Ge, W., Cai, G., Qu, C. et al. A new type of plasma irradiation-resistant amorphous TiZrHfTaW refractory multi-component alloy. Acta Materialia, 2025. DOI:10.1016/j.actamat.2025.120822 |