Citation: | Jingwei LI, Li LI, Yueqiang LIU, Yunfeng LIANG, Yanfei WANG, Lu TIAN, Zhongqing LIU, Fangchuan ZHONG. Toroidal torques due to n = 1 magnetic perturbations in ITER baseline scenario[J]. Plasma Science and Technology, 2025, 27(1): 015104. DOI: 10.1088/2058-6272/ad90af |
Toroidal torques, generated by the resonant magnetic perturbation (RMP) and acting on the plasma column, are numerically systematically investigated for an ITER baseline scenario. The neoclassical toroidal viscosity (NTV), in particular the resonant portion, is found to provide the dominant contribution to the total toroidal torque under the slow plasma flow regime in ITER. While the electromagnetic torque always opposes the plasma flow, the toroidal torque associated with the Reynolds stress enhances the plasma flow independent of the flow direction. A peculiar double-peak structure for the net NTV torque is robustly computed for ITER, as the toroidal rotation frequency is scanned near the zero value. This structure is found to be ultimately due to a non-monotonic behavior of the wave-particle resonance integral (over the particle pitch angle) in the superbanana plateau NTV regime in ITER. These findings are qualitatively insensitive to variations of a range of factors including the wall resistivity, the plasma pedestal flow and the assumed frequency of the rotating RMP field.
The authors thank Dr. A. M. Garofalo from General Atomics motivating us to perform the present study. This work was funded by National Natural Science Foundation of China (NSFC) (Nos. 12075053, 11505021 and 11975068), by National Key R&D Program of China (No. 2022YFE03060002) and by Fundamental Research Funds for the Central Universities (No. 2232024G-10). The work was also supported by the U.S. DoE Office of Science (No. DE-FG02–95ER54309). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
[1] |
Loarte A et al 2014 Nucl. Fusion 54 033007 doi: 10.1088/0029-5515/54/3/033007
|
[2] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[3] |
Kirk A et al 2010 Nucl. Fusion 50 034008 doi: 10.1088/0029-5515/50/3/034008
|
[4] |
Sun Y et al 2016 Phys. Rev. Lett. 117 115001 doi: 10.1103/PhysRevLett.117.115001
|
[5] |
Suttrop W et al 2011 Phys. Rev. Lett. 106 225004 doi: 10.1103/PhysRevLett.106.225004
|
[6] |
Jeon Y M et al 2012 Phys. Rev. Lett. 109 035004 doi: 10.1103/PhysRevLett.109.035004
|
[7] |
Evans T E et al 2004 Phys. Rev. Lett. 92 235003 doi: 10.1103/PhysRevLett.92.235003
|
[8] |
Sun T F et al 2021 Nucl. Fusion 61 036020 doi: 10.1088/1741-4326/abd2c7
|
[9] |
Chapman I T et al 2012 Plasma Phys. Control. Fusion 54 105013 doi: 10.1088/0741-3335/54/10/105013
|
[10] |
Li L et al 2019 Nucl. Fusion 59 096038 doi: 10.1088/1741-4326/ab2bca
|
[11] |
Turnbull A D et al 2013 Phys. Plasmas 20 056114 doi: 10.1063/1.4805087
|
[12] |
Liu Y Q et al 2011 Nucl. Fusion 51 083002 doi: 10.1088/0029-5515/51/8/083002
|
[13] |
Evans T E et al 2013 Nucl. Fusion 53 093029 doi: 10.1088/0029-5515/53/9/093029
|
[14] |
Orain F et al 2013 Phys. Plasmas 20 102510 doi: 10.1063/1.4824820
|
[15] |
Li L et al 2016 Nucl. Fusion 56 126007 doi: 10.1088/0029-5515/56/12/126007
|
[16] |
Li L et al 2017 Plasma Phys. Control. Fusion 59 044005 doi: 10.1088/1361-6587/aa5769
|
[17] |
Nazikian R et al 2015 Phys. Rev. Lett. 114 105002 doi: 10.1103/PhysRevLett.114.105002
|
[18] |
Heyn M F et al 2008 Nucl. Fusion 48 024005 doi: 10.1088/0029-5515/48/2/024005
|
[19] |
Bécoulet M et al 2009 Nucl. Fusion 49 085011 doi: 10.1088/0029-5515/49/8/085011
|
[20] |
Ferraro N M 2012 Phys. Plasmas 19 014505 doi: 10.1063/1.3677258
|
[21] |
Liu Y Q et al 2012 Plasma Phys. Control. Fusion 54 124013 doi: 10.1088/0741-3335/54/12/124013
|
[22] |
Liu Y Q et al 2020 Nucl. Fusion 60 096026 doi: 10.1088/1741-4326/aba334
|
[23] |
Liu Y Q, Kirk A and Sun Y 2013 Phys. Plasmas 20 042503 doi: 10.1063/1.4799535
|
[24] |
Fitzpatrick R 1998 Phys. Plasmas 5 3325 doi: 10.1063/1.873000
|
[25] |
Yu Q and Günter S 2008 Nucl. Fusion 48 065004 doi: 10.1088/0029-5515/48/6/065004
|
[26] |
Liu Y Q et al 2012 Phys. Plasmas 19 102507 doi: 10.1063/1.4759205
|
[27] |
Liu Y Q et al 2015 Nucl. Fusion 55 063027 doi: 10.1088/0029-5515/55/6/063027
|
[28] |
Polevoi A R et al 2015 Nucl. Fusion 55 063019 doi: 10.1088/0029-5515/55/6/063019
|
[29] |
Yan X T et al 2023 Nucl. Fusion 63 096020 doi: 10.1088/1741-4326/acea95
|
[30] |
Liu Y Q et al 2000 Phys. Plasmas 7 3681 doi: 10.1063/1.1287744
|
[31] |
Sun X et al 2024 Phys. Plasmas 31 013902 doi: 10.1063/5.0168955
|
[32] |
Pereverzew G V et al 1991 ASTRA. An automatic system for transport analysis in a tokamak Garching: Max-Planck-Institut für Plasmaphysik
|
[33] |
Shaing K C 2003 Phys. Plasmas 10 1443 doi: 10.1063/1.1567285
|
[34] |
Zhu W et al 2006 Phys. Rev. Lett. 96 225002 doi: 10.1103/PhysRevLett.96.225002
|
[35] |
Shaing K C, Sabbagh S A and Chu M S 2010 Nucl. Fusion 50 025022 doi: 10.1088/0029-5515/50/2/025022
|
[36] |
Wang Z R et al 2015 Phys. Rev. Lett. 114 145005 doi: 10.1103/PhysRevLett.114.145005
|
[37] |
Villone F et al 2010 Nucl. Fusion 50 125011 doi: 10.1088/0029-5515/50/12/125011
|
[38] |
Albert C G et al 2016 Phys. Plasmas 23 082515 doi: 10.1063/1.4961084
|
[39] |
Cole A J et al 2011 Phys. Rev. Lett. 106 225002 doi: 10.1103/PhysRevLett.106.225002
|
[40] |
Connor J W, Hastie R J and Martin T J 1983 Nucl. Fusion 23 1702 doi: 10.1088/0029-5515/23/12/017
|
[41] |
Budny R V et al 2008 Nucl. Fusion 48 075005 doi: 10.1088/0029-5515/48/7/075005
|
[42] |
Li L et al 2020 Nucl. Fusion 60 016013 doi: 10.1088/1741-4326/ab4443
|
[43] |
Liu Y Q et al 2024 Nucl. Fusion 64 106026 doi: 10.1088/1741-4326/ad70cb
|
[44] |
Diamond P H et al 2013 Nucl. Fusion 53 104019 doi: 10.1088/0029-5515/53/10/104019
|
[1] | Shiqiang LIU (刘士强), Shouzheng LI (李守正), Yuze JIANG (姜雨泽), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines[J]. Plasma Science and Technology, 2020, 22(4): 44001-044001. DOI: 10.1088/2058-6272/ab571e |
[2] | Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26 |
[3] | Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1 |
[4] | WANG Songbai (王松柏), LEI Guangjiu (雷光玖), BI Zhenhua (毕振华), H. GHOMI, YANG Size (杨思泽), LIU Dongping (刘东平). Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator[J]. Plasma Science and Technology, 2016, 18(9): 907-911. DOI: 10.1088/1009-0630/18/9/06 |
[5] | WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16 |
[6] | XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24 |
[7] | F. L. BRAGA. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus[J]. Plasma Science and Technology, 2013, 15(10): 985-988. DOI: 10.1088/1009-0630/15/10/05 |
[8] | QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03 |
[9] | WANG Qing (王庆), WANG Yongfu (王永富), BA Dechun (巴德纯), YUE Xiangji (岳向吉). The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process[J]. Plasma Science and Technology, 2012, 14(3): 235-239. DOI: 10.1088/1009-0630/14/3/09 |
[10] | HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16 |
1. | Tan, L., Liu, Y., Yuan, Z. et al. Linear modeling analysis of the heat balance of the transmission line in high frequency critical ice melting state. International Journal of Low-Carbon Technologies, 2024. DOI:10.1093/ijlct/ctad134 |
2. | Li, J., Duan, X., Huang, Z. et al. Study on the formation of arc plasma on the resistive wall liquid metal current limiter. Plasma Science and Technology, 2023, 25(8): 085507. DOI:10.1088/2058-6272/acc235 |
3. | Hu, R., Lu, H., Chen, J. et al. Research on Automatic Maintenance Method of Flexible Maintenance Robot for Heating Defects of High Voltage Transmission Lines. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2688702 |
4. | Luo, X., Yin, M., Xu, C. et al. Anti-collision Alarm System of Crane Against High-Voltage Lines Based on Multimodal Information. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2682508 |
5. | Zhang, X., Wang, J., Wang, F. et al. Particle Simulation of Positive Streamer Discharges on Surface of DC Transmission Conductors with Coating Materials. IEEE Transactions on Plasma Science, 2022, 50(10): 3751-3759. DOI:10.1109/TPS.2022.3202648 |
6. | Li, J., Duan, X., Xie, W. et al. A novel fault current limiter topology design based on liquid metal current limiter. Plasma Science and Technology, 2022, 24(8): 085503. DOI:10.1088/2058-6272/ac64f0 |
7. | Nie, Y., Jing, Y., Zhang, M. et al. A New Method to Detect Corona Discharge in Power Equipment. IET Conference Proceedings, 2021, 2021(15): 1882-1886. DOI:10.1049/icp.2022.0184 |
8. | Jiang, Y., Zang, Y., Yu, G. et al. Study on the Suppression of Dielectric Barrier in Bipolar HVDC Corona Discharge. 2021. DOI:10.1109/AEERO52475.2021.9708225 |