Advanced Search+
Yorick FENNER, Martin BELLMANN, Andreas TÜMMEL, Christoph GERHARD. Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes[J]. Plasma Science and Technology, 2025, 27(1): 015504. DOI: 10.1088/2058-6272/ad94cd
Citation: Yorick FENNER, Martin BELLMANN, Andreas TÜMMEL, Christoph GERHARD. Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes[J]. Plasma Science and Technology, 2025, 27(1): 015504. DOI: 10.1088/2058-6272/ad94cd

Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes

More Information
  • Author Bio:

    Christoph GERHARD: christoph.gerhard@hawk.de

  • Corresponding author:

    Christoph GERHARD, christoph.gerhard@hawk.de

  • Received Date: August 13, 2024
  • Revised Date: November 04, 2024
  • Accepted Date: November 18, 2024
  • Available Online: November 19, 2024
  • Published Date: December 23, 2024
  • Due to the continuously increasing building and construction industry, sand has become one of the most questioned raw materials worldwide. However, the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption. Even though desert sand is sufficiently available, it is not usable for realizing stable concrete due to its surface shape. Against this background, the suitability of energy-efficient ‘cold’ dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution. It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains. As a result, the mass flow of treated sand is decreased due to an improved wedging of sand grains. This leads to a certain increase in compressive strength of concrete samples. Even though this increase is marginal, the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven, showing its basic potential for the treatment and preconditioning of sand used for concrete, mortar or plastering.

  • This research was funded by the Bundesministerium für Bildung und Forschung (Nos. 13FH6I06IA and 13FH6I08IA).

  • [1]
    Pettijohn F J, Potter P E and Siever R 1973 Sand and Sandstone (Berlin: Springer) 1 ISBN 3540055282
    [2]
    Torres A et al 2017 Science 357 970 doi: 10.1126/science.aao0503
    [3]
    Gunaratne LHP 2010 Economy and Environment Program for Southeast Asia ISBN 9789810877095
    [4]
    Zhang M H et al 2019 Appl. Sci. 9 4151 doi: 10.3390/app9194151
    [5]
    Neukirchen F and Ries G 2016 Industrieminerale, Steine und Erden In: Neukirchen F and Ries G Die Welt der Rohstoffe (Berlin: Springer) p. 317 ISBN 9783642377389 (in German
    [6]
    Elavenil S and Bhoopathy V 2013 Int. J. Civil Eng. Res. Dev. 3 1 doi: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3513295
    [7]
    Abdias M W M et al 2023 Open J. Civil Eng. 13 353 doi: 10.4236/ojce.2023.132027
    [8]
    Gnanasundar V M, Suvetha S and Preethy S 2019 AIP Conf. Proc. 2128 020011 doi: 10.1063/1.5117923
    [9]
    Cai H et al 2020 Adv. Civil Eng. 2020 8875922 doi: 10.1155/2020/8875922
    [10]
    Jörg B 2017 Use of treated desert sand as an aggregate for concrete WO2017178362A1
    [11]
    Che J L et al 2019 Appl. Sci. 9 1857 doi: 10.3390/app9091857
    [12]
    Zhang G X et al 2006 Build. Environ. 41 1478 doi: 10.1016/j.buildenv.2005.05.033
    [13]
    Bruyako M G et al 2014 Adv. Mater. Res. 1040 730 doi: 10.4028/www.scientific.net/AMR.1040.730
    [14]
    Nalbandyan G, Soloviev V and Ushkov V 2019 Mater. Today Proc. 19 1841 doi: 10.1016/j.matpr.2019.07.024
    [15]
    Gerhard C et al 2012 Plasma Chem. Plasma Proces. 33 895 doi: 10.1007/s11090-013-9471-7
    [16]
    Gredner A et al 2013 J. Mater. Sci. Eng. B 3 346 doi: 10.17265/2161-6221/2013.06.002
    [17]
    Bellmann M et al 2024 Plasma Process. Polym. 21 2300224 doi: 10.1002/ppap.202300224
    [18]
    Gerhard C et al 2013 J. Eur. Opt. Soc. Rapid Publ. 8 13081 doi: 10.2971/jeos.2013.13081
    [19]
    Gerhard C, Viöl W and Kretschmer M 2012 Opt. Photonik 7 35 doi: 10.1002/opph.201290098
    [20]
    McCoy WJ 1989 ASTM Special Publication 196B 765 doi: 10.1520/STP49900S
    [21]
  • Related Articles

    [1]Jingyun ZHANG, Min ZHU, Chaohai ZHANG. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space[J]. Plasma Science and Technology, 2025, 27(1): 015402. DOI: 10.1088/2058-6272/ad862c
    [2]Shuai XU, Wenzheng LIU, Jiaying QIN, Yiwei SUN, Xitao JIANG, Qi QI. Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification[J]. Plasma Science and Technology, 2024, 26(10): 105401. DOI: 10.1088/2058-6272/ad5ca0
    [3]Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
    [4]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [5]Junfeng RONG (荣俊锋), Kaixun ZHU (朱凯勋), Minggong CHEN (陈明功). Study on purification technology of polyacrylamide wastewater by non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(5): 54008-054008. DOI: 10.1088/2058-6272/aafceb
    [6]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [7]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [8]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [9]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [10]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
  • Cited by

    Periodical cited type(8)

    1. Tan, L., Liu, Y., Yuan, Z. et al. Linear modeling analysis of the heat balance of the transmission line in high frequency critical ice melting state. International Journal of Low-Carbon Technologies, 2024. DOI:10.1093/ijlct/ctad134
    2. Li, J., Duan, X., Huang, Z. et al. Study on the formation of arc plasma on the resistive wall liquid metal current limiter. Plasma Science and Technology, 2023, 25(8): 085507. DOI:10.1088/2058-6272/acc235
    3. Hu, R., Lu, H., Chen, J. et al. Research on Automatic Maintenance Method of Flexible Maintenance Robot for Heating Defects of High Voltage Transmission Lines. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2688702
    4. Luo, X., Yin, M., Xu, C. et al. Anti-collision Alarm System of Crane Against High-Voltage Lines Based on Multimodal Information. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2682508
    5. Zhang, X., Wang, J., Wang, F. et al. Particle Simulation of Positive Streamer Discharges on Surface of DC Transmission Conductors with Coating Materials. IEEE Transactions on Plasma Science, 2022, 50(10): 3751-3759. DOI:10.1109/TPS.2022.3202648
    6. Li, J., Duan, X., Xie, W. et al. A novel fault current limiter topology design based on liquid metal current limiter. Plasma Science and Technology, 2022, 24(8): 085503. DOI:10.1088/2058-6272/ac64f0
    7. Nie, Y., Jing, Y., Zhang, M. et al. A New Method to Detect Corona Discharge in Power Equipment. IET Conference Proceedings, 2021, 2021(15): 1882-1886. DOI:10.1049/icp.2022.0184
    8. Jiang, Y., Zang, Y., Yu, G. et al. Study on the Suppression of Dielectric Barrier in Bipolar HVDC Corona Discharge. 2021. DOI:10.1109/AEERO52475.2021.9708225

    Other cited types(0)

Catalog

    Figures(8)

    Article views (13) PDF downloads (3) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return