Advanced Search+
Yorick FENNER, Martin BELLMANN, Andreas TÜMMEL, Christoph GERHARD. Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes[J]. Plasma Science and Technology, 2025, 27(1): 015504. DOI: 10.1088/2058-6272/ad94cd
Citation: Yorick FENNER, Martin BELLMANN, Andreas TÜMMEL, Christoph GERHARD. Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes[J]. Plasma Science and Technology, 2025, 27(1): 015504. DOI: 10.1088/2058-6272/ad94cd

Feasibility study on the suitability of dielectric barrier discharge plasma treatment of desert sand for concrete production purposes

More Information
  • Author Bio:

    Christoph GERHARD: christoph.gerhard@hawk.de

  • Corresponding author:

    Christoph GERHARD, christoph.gerhard@hawk.de

  • Received Date: August 13, 2024
  • Revised Date: November 04, 2024
  • Accepted Date: November 18, 2024
  • Available Online: November 19, 2024
  • Published Date: December 23, 2024
  • Due to the continuously increasing building and construction industry, sand has become one of the most questioned raw materials worldwide. However, the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption. Even though desert sand is sufficiently available, it is not usable for realizing stable concrete due to its surface shape. Against this background, the suitability of energy-efficient ‘cold’ dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution. It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains. As a result, the mass flow of treated sand is decreased due to an improved wedging of sand grains. This leads to a certain increase in compressive strength of concrete samples. Even though this increase is marginal, the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven, showing its basic potential for the treatment and preconditioning of sand used for concrete, mortar or plastering.

  • This research was funded by the Bundesministerium für Bildung und Forschung (Nos. 13FH6I06IA and 13FH6I08IA).

  • [1]
    Pettijohn F J, Potter P E and Siever R 1973 Sand and Sandstone (Berlin: Springer) 1 ISBN 3540055282
    [2]
    Torres A et al 2017 Science 357 970 doi: 10.1126/science.aao0503
    [3]
    Gunaratne LHP 2010 Economy and Environment Program for Southeast Asia ISBN 9789810877095
    [4]
    Zhang M H et al 2019 Appl. Sci. 9 4151 doi: 10.3390/app9194151
    [5]
    Neukirchen F and Ries G 2016 Industrieminerale, Steine und Erden In: Neukirchen F and Ries G Die Welt der Rohstoffe (Berlin: Springer) p. 317 ISBN 9783642377389 (in German
    [6]
    Elavenil S and Bhoopathy V 2013 Int. J. Civil Eng. Res. Dev. 3 1 doi: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3513295
    [7]
    Abdias M W M et al 2023 Open J. Civil Eng. 13 353 doi: 10.4236/ojce.2023.132027
    [8]
    Gnanasundar V M, Suvetha S and Preethy S 2019 AIP Conf. Proc. 2128 020011 doi: 10.1063/1.5117923
    [9]
    Cai H et al 2020 Adv. Civil Eng. 2020 8875922 doi: 10.1155/2020/8875922
    [10]
    Jörg B 2017 Use of treated desert sand as an aggregate for concrete WO2017178362A1
    [11]
    Che J L et al 2019 Appl. Sci. 9 1857 doi: 10.3390/app9091857
    [12]
    Zhang G X et al 2006 Build. Environ. 41 1478 doi: 10.1016/j.buildenv.2005.05.033
    [13]
    Bruyako M G et al 2014 Adv. Mater. Res. 1040 730 doi: 10.4028/www.scientific.net/AMR.1040.730
    [14]
    Nalbandyan G, Soloviev V and Ushkov V 2019 Mater. Today Proc. 19 1841 doi: 10.1016/j.matpr.2019.07.024
    [15]
    Gerhard C et al 2012 Plasma Chem. Plasma Proces. 33 895 doi: 10.1007/s11090-013-9471-7
    [16]
    Gredner A et al 2013 J. Mater. Sci. Eng. B 3 346 doi: 10.17265/2161-6221/2013.06.002
    [17]
    Bellmann M et al 2024 Plasma Process. Polym. 21 2300224 doi: 10.1002/ppap.202300224
    [18]
    Gerhard C et al 2013 J. Eur. Opt. Soc. Rapid Publ. 8 13081 doi: 10.2971/jeos.2013.13081
    [19]
    Gerhard C, Viöl W and Kretschmer M 2012 Opt. Photonik 7 35 doi: 10.1002/opph.201290098
    [20]
    McCoy WJ 1989 ASTM Special Publication 196B 765 doi: 10.1520/STP49900S
    [21]
  • Related Articles

    [1]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [2]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [3]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [4]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [5]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [6]WEI Hao (魏浩), SUN Fengju (孙凤举), YIN Jiahui (尹佳辉), HU Yixiang (呼义翔), LIANG Tianxue (梁天学), CONG Peitian (丛培天), QIU Aici (邱爱慈). Numerical Simulation of Azimuthal Uniformity of Injection Currents in Single-Point-Feed Induction Voltage Adders[J]. Plasma Science and Technology, 2015, 17(3): 235-240. DOI: 10.1088/1009-0630/17/3/11
    [7]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [10]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Figures(8)

    Article views (13) PDF downloads (3) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return