Advanced Search+
Yangli XU (徐仰丽), Liuwei MENG (孟留伟), Xiaojing CHEN (陈孝敬), Xi CHEN (陈熙), Laijin SU (苏来金), Leiming YUAN (袁雷明), Wen SHI (石文), Guangzao HUANG (黄光造). A strategy to significantly improve the classification accuracy of LIBS data: application for the determination of heavy metals in Tegillarca granosa[J]. Plasma Science and Technology, 2021, 23(8): 85503-085503.
Citation: Yangli XU (徐仰丽), Liuwei MENG (孟留伟), Xiaojing CHEN (陈孝敬), Xi CHEN (陈熙), Laijin SU (苏来金), Leiming YUAN (袁雷明), Wen SHI (石文), Guangzao HUANG (黄光造). A strategy to significantly improve the classification accuracy of LIBS data: application for the determination of heavy metals in Tegillarca granosa[J]. Plasma Science and Technology, 2021, 23(8): 85503-085503.

A strategy to significantly improve the classification accuracy of LIBS data: application for the determination of heavy metals in Tegillarca granosa

Funds: This work was supported by the Natural Science Foundation of Zhejiang Province (No. LY21C200001); National Natural Science Foundation of China (No. 31571920); Wenzhou Science and Technology Project (No. N20160004) and Wenzhou Basic Public Welfare Project (No. N20190017).
More Information
  • Tegillarca granosa, as a popular seafood among consumers, is easily susceptible to pollution from heavy metals. Thus, it is essential to develop a rapid detection method for Tegillarca granosa. For this issue, five categories of Tegillarca granosa samples consisting of a healthy group; Zn, Pb, and Cd polluted groups; and a mixed pollution group of all three metals were used to detect heavy metal pollution by combining laser-induced breakdown spectrometry (LIBS) and the newly proposed linear regression classification-sum of rank difference (LRC-SRD) algorithm. As the comparison models, least regression classification (LRC), support vector machine (SVM), and k-nearest neighbor (KNN) and linear discriminant analysis were also utilized. Satisfactory accuracy (0.93) was obtained by LRC-SRD model and which performs better than other models. This demonstrated that LIBS coupled with LRC-SRD is an efficient framework for Tegillarca granosa heavy metal detection and provides an alternative to replace traditional methods.
  • [1]
    Wang S L et al 2013 Mar. Pollut. Bull. 76 7
    [2]
    Bao Y et al 2013 Fish Shellfish Immunol. 34 1696
    [3]
    Yuan L M et al 2018 Food Anal. Methods 11 1405
    [4]
    Zhang C D et al 2012 Oceanol. Limnol. Sin. 43 919 (in Chinese)
    [5]
    Nardi E P et al 2009 Food Chem. 112 727
    [6]
    Behbahani M et al 2014 Environ. Monit. Assess. 186 7245
    [7]
    Li Y J and Hu B 2007 Spectrochim. Acta B 62 1153
    [8]
    Huang L X et al 2019 J. Anal. At. Spectrom. 34 460
    [9]
    Rusak D A et al 1997 Crit. Rev. Anal. Chem. 27 257
    [10]
    Sirven J B et al 2006 Anal. Bioanal. Chem. 385 256
    [11]
    Harmon R S, Russo R E and Hark R R 2013 Spectrochim. Acta B 87 11
    [12]
    Multari R A et al 2013 J. Agric. Food Chem. 61 8687
    [13]
    Yuan T B et al 2013 J. Anal. At. Spectrom. 28 1045
    [14]
    Sallé B et al 2005 Spectrochim. Acta B 60 479
    [15]
    Safi A et al 2019 Anal. Chem. 91 8595
    [16]
    Huang J S, Ke C B and Lin K C 2004 Spectrochim. Acta B 59 321
    [17]
    Gabriela V et al 2012 Spectrochim. Acta B 73 1
    [18]
    Li X H et al 2018 Opt. Laser Technol. 102 233
    [19]
    Basri K N et al 2018 Anal. Methods 10 4143
    [20]
    Lin J J et al 2018 J. Anal. At. Spectrom. 33 1545
    [21]
    Kharbach M et al 2021 Talanta 225 122073
    [22]
    Huang S M and Yang J F 2013 IEEE Signal Process. Lett.20 91
    [23]
    Kalivas J H, Héberger K and Andries E 2015 Anal. Chim. Acta 869 21
    [24]
    Chen X J et al 2020 Sensors Actuators B 311 127924
    [25]
    Naseem I, Togneri R and Bennamoun M 2010 IEEE Trans.Pattern Anal. Mach. Intell. 32 2106
    [26]
    Wright J et al 2009 IEEE Trans. Pattern Anal. Mach. Intell.31 210
    [27]
    Chen P H, Lin C J and Schölkopf B 2005 Appl. Stoch. Model.Bus. Ind. 21 111
    [28]
    Ravindran S and Aghila G 2020 Natl. Acad. Sci. Lett. 43 13
    [29]
    Martinez A M and Kak A C 2001 IEEE Trans. Pattern Anal.Mach. Intell. 23 228
    [30]
    Kollár-Hunek K and Héberger K 2013 Chemometr. Intell. Lab.Syst. 127 139
    [31]
    Héberger K 2010 TrAC Trends Anal. Chem. 29 101
    [32]
    Nie M P et al 2019 J. Chemometr. 33 e3113
    [33]
    West C et al 2015 J. Chromatogr. A 1409 241
    [34]
    Yang Y L et al 2013 Appl. Mech. Mater. 313–314 579
    [35]
    Li T Q et al 2019 Anal. Chim. Acta 1058 39
  • Related Articles

    [1]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [2]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [3]CONG Haoxi(丛浩熹), LI Qingmin(李庆民), XING Jinyuan(行晋源), LI Jinsong(李劲松). Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines[J]. Plasma Science and Technology, 2014, 16(9): 843-847. DOI: 10.1088/1009-0630/16/9/07
    [4]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [5]XIA Donghui(夏冬辉), ZHOU Jun(周俊), RAO Jun(饶军), HUANG Mei(黄梅), LU Zhihong(陆志鸿), WANG He(王贺), CHEN Gangyu(陈罡宇), WANG Chao(王超), LU Bo(卢波), ZHUANG Ge(庄革). Design of the Transmission Lines for 140 GHz ECRH System on HL-2A[J]. Plasma Science and Technology, 2014, 16(3): 267-272. DOI: 10.1088/1009-0630/16/3/17
    [6]LI Miaohui(李妙辉), DING Bojiang(丁伯江), LI Wenke(李文科), KONG Erhua(孔二华), SHAN Jiafang(单家方), LIU Fukun(刘甫坤), WANG Mao(王茂), XU Handong(徐旵东). An Investigation of LHCD Efficiency and Transformer Recharging in the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(3): 201-206. DOI: 10.1088/1009-0630/14/3/04
    [7]LIU Feng(刘峰), LIN Xiaoxuan(林晓宣), LIU Bicheng(刘必成), DING Wenjun (丁文君), DU Fei(杜飞), LI Yutong(李玉同), MA Jinglong(马景龙), LIU Xiaolong (刘晓龙), et al. Transmission Degradation of Femtosecond Laser Pulses in Opened Cone Targets[J]. Plasma Science and Technology, 2012, 14(1): 24-27. DOI: 10.1088/1009-0630/14/1/06
    [8]HU Yixiang, QIU Aici, WANG Liangping, HUANG TaoCONG Peitian, ZHANG Xinjun, LI Yan, ZENG Zhengzhong, SUN Tieping, LEI Tianshi, WU Hanyu GUO Ning, HAN J. Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code[J]. Plasma Science and Technology, 2011, 13(5): 631-636.
    [9]Hiroe IGAMI, Hiroshi IDEI, Shin KUBO, Yasuo YOSHIMURA., Takashi SHIMOZUMA, Hiromi TAKAHASHI. Measurement of the electron Bernstein wave emission with one of the power transmission lines for ECH in LHD[J]. Plasma Science and Technology, 2011, 13(4): 405-409.
    [10]SHANG Wanli, ZHAO Yang, XIONG Gang, YANG Jiamin, ZHU Tuo. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer[J]. Plasma Science and Technology, 2011, 13(1): 36-39.

Catalog

    Article views (123) PDF downloads (479) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return