WANG Shuai(王帅), XU Xiang(徐翔), WANG Younian(王友年). A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma[J]. Plasma Science and Technology, 2012, 14(1): 32-36. DOI: 10.1088/1009-0630/14/1/08
Citation:
WANG Shuai(王帅), XU Xiang(徐翔), WANG Younian(王友年). A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma[J]. Plasma Science and Technology, 2012, 14(1): 32-36. DOI: 10.1088/1009-0630/14/1/08
WANG Shuai(王帅), XU Xiang(徐翔), WANG Younian(王友年). A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma[J]. Plasma Science and Technology, 2012, 14(1): 32-36. DOI: 10.1088/1009-0630/14/1/08
Citation:
WANG Shuai(王帅), XU Xiang(徐翔), WANG Younian(王友年). A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma[J]. Plasma Science and Technology, 2012, 14(1): 32-36. DOI: 10.1088/1009-0630/14/1/08
Department of Physics, College of Sciences, Northeastern University, Shenyang 110891, China
2.
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Funds: supported by the scientific Foundation from Ministry of Education of China(No.N09305004) and Doctor Startup Foundation Program of Liaoning Province(No.20111008)
We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions (IEDs) and ion angle distributions (IADs) on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode.