Advanced Search+
CHEN Zhaoquan(陈兆权), ZHENG Xiaoliang(郑晓亮), XIA Guangqing(夏广庆), LI Ping(李平), HU Yelin(胡业林), DU Zhiwen(杜志文), ZHU Longji(祝龙记), LIU Minghai(刘明海), CHEN Minggong(陈明功), HU Xiwei(胡希伟). A 30 mm Wide DC-Driven Brush-Shaped Cold Air Plasma Without Airflow Supplement[J]. Plasma Science and Technology, 2014, 16(4): 329-334. DOI: 10.1088/1009-0630/16/4/06
Citation: CHEN Zhaoquan(陈兆权), ZHENG Xiaoliang(郑晓亮), XIA Guangqing(夏广庆), LI Ping(李平), HU Yelin(胡业林), DU Zhiwen(杜志文), ZHU Longji(祝龙记), LIU Minghai(刘明海), CHEN Minggong(陈明功), HU Xiwei(胡希伟). A 30 mm Wide DC-Driven Brush-Shaped Cold Air Plasma Without Airflow Supplement[J]. Plasma Science and Technology, 2014, 16(4): 329-334. DOI: 10.1088/1009-0630/16/4/06

A 30 mm Wide DC-Driven Brush-Shaped Cold Air Plasma Without Airflow Supplement

Funds: supported by National Natural Science Foundation of China (No. 11105002), Open-End Fund of State Key Laboratory of Struc- tural Analysis for Industrial Equipment (No. GZ1215), Natural Science Foundation for University in Anhui Province of China (No. KJ2013A106), and Doctoral Scientific Research Funds of AUST
More Information
  • Received Date: August 25, 2013
  • This paper reports a cold atmospheric pressure DC-driven air plasma brush. Three stainless steel needles are symmetrically mounted on a slot shaped PVC slab to act as the elec- trodes. The brush driven by a direct current (DC) power supply can generate an air plasma glow up to 30 mm wide with no inert gas addition and no air flow supplement. The plasma glow appears uniform no matter what kinds of material are processed. The measured current and the simulated current all show that each pulsed discharge including two peaks always oc- curs for different gaps between electrodes. Emission spectra measurement result shows that the obtained rotational temperatures are 300 K and the vibrational temperatures are 2250 K. Some reactive species are presented in the plasma glow, which suggest that the proposed plasma brush is beneficial to practical applications.
  • 1 Chen Z, Xia G, Zhou Q, et al. 2012, Rev. Sci. Instrum.,83: 084701;
    2 Cvelbar U. 2011, J. Phys. D: Appl. Phys., 44: 174014;
    3 Kong M, Kroesen G, Morˉll G, et al. 2009, New J.Phys., 11: 115012;
    4 Chen Z, Xia G, Liu M, et al. 2012, IEEE Trans. Plasma Sci., 40: 2861;
    5 Chu P K. 2007, IEEE Trans. Plasma Sci., 35 : 181;
    6 Walsh J L and Kong M. 2008, Appl. Phys. Lett., 93:111501;
    7 Laroussi M and Akman M A. 2011, AIP Adv., 1:032138;
    8 Nie Q Y, Wang D Z, Ren C S, et al. 2008, Appl. Phys.Lett., 93: 011503;
    9 Lu X, Jiang Z, Xiong Q, et al. 2008, Appl. Phys. Lett.,92: 151504;
    10 Lu X, Laroussi M, and Puech V, 2012, Plasma Sources Sci. Technol., 21: 034005;
    11 Hong Y and Uhm H. 2007, Phys. Plasmas, 14: 053503;
    12 Hong Y, Kang W, Hong Y, et al. 2009, Phys. Plasmas,16: 123502;
    13 Pei X, Lu X, Liu J, et al. 2012, J. Phys. D: Appl. Phys.,45: 165205;
    14 Wu S, Lu X, Xiong Z, et al. 2010, IEEE Trans. Plasma Sci., 38: 3404; Wu S, Wang Z, Huang Q, et al. 2011,IEEE Trans. Plasma Sci., 39: 1489;
    15 Wu S, Wang Z, Huang Q, et al. 2012, Phys. Plasmas,19: 103503;
    16 Kang S K, Seo Y S, Lee H W, et al. 2011, J. Phys. D:Appl. Phys., 44: 435201;
    17 Tang J, Cao W, Zhao W, et al. 2012, Phys. Plasmas,19: 013501;
    18 Lu X, Wu S, Chu P K, et al. 2011, Plasma Sources Sci. Technol., 20: 065009;
    19 Wang D, Zhao D, Feng K, et al. 2011, Appl. Phys.Lett., 98 : 161501;
    20 Liu X, Hu J, Liu J, et al. 2012, Appl. Phys. Lett., 101:043705;
    21 Xian Y, Wu S, Wang Z, et al. 2013, Plasma Process.Polym., 10: 372;
    22 Lu X, Jiang Z, Xiong Q, et al. 2008, Appl. Phys. Lett.,92: 081502;
    23 Wang Z, Ren C, Nie Q, et al. 2009, Plasma Sci. Tech-nol., 11: 177;
    24 Wang Y H and Wang D Z. 2006, Plasma Sci. Technol.,8: 539

Catalog

    Article views (196) PDF downloads (1328) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return