Advanced Search+
ZHANG Liping (张丽萍). Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering[J]. Plasma Science and Technology, 2015, 17(10): 826-830. DOI: 10.1088/1009-0630/17/10/03
Citation: ZHANG Liping (张丽萍). Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering[J]. Plasma Science and Technology, 2015, 17(10): 826-830. DOI: 10.1088/1009-0630/17/10/03

Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

More Information
  • Received Date: November 09, 2014
  • We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) elec?tron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the elec?tron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation con?tributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET.
  • 1 Dyakonov M, and Shur M. 1993, Phys. Rev. Lett., 71:2465 2 Wang L, Chen X S, Hu W D, et al. 2013, Appl. Phys.Lett., 102: 243507 3 Khorrami M A, El-Ghazaly S, Yu S Q, et al. 2012, J.Appl. Phys., 111: 094501 4 Dyakonov M, and Shur M. 2005, Appl. Phys. Lett., 87:11501 5 Cheremisin M V, and Samsonidze G G. 2008, SolidState Electronics, 52: 338 6 Dyakonov M, and Shur M. 1996, IEEE Transactions on Electron Devices, 43: 380 7 Gutin A, Kachorovskii V, Muraviev A, et al. 2012, J.Appl. Phys., 112: 014508 8 Knap W, Sakowski J, Parenty T, et al. 2004, Appl.Phys. Lett., 84: 2331 9 El Fatimy A, Dyakonova N, Meziani Y, et al. 2010, J.Appl. Phys., 107: 024504 10 Knap W, Teppe F, Dyakonova N, et al. 2008, J. Phys.Condens Matter, 20: 384205 11 Boubanga-Tombeta S, Nogajewskib K, Teppea F,et al. 2009, Physica Polonica A, 116: 939 12 Nouvel P, Torres J, Blin S, et al. 2012, J. Appl. Phys.,111: 103707 13 Knap W, Deng Y, Rumyantsev S, et al. 2002, Appl.Phys. Lett., 81: 4637 14 Knap W, Deng Y, Rumyantsev S, et al. 2002, Appl.Phys. Lett., 80: 3433 15 Dyakonova N, El Fatimy A, Sakowski J, et al. 2006,Appl. Phys. Lett., 88: 141906 16 Ang L K, and Zhang P. 2007, Phys. Rev. Lett., 98:164802 17 Ang L K, Koh W S, Lau Y Y, et al. 2006, Phys. Plasmas, 13: 056701 18 Cheremisin M V, Dyakonov M, Shur M S, et al. 1998,Solid-State Electronics, 42: 1737 19 Vasilopoulos P, and Kushwahab M S. 2002, Physica E,12: 482 20 Crouseilles N, Hervieux P A, and Manfredi G. 2008,Phys. Rev. B, 78: 155412 21 Manfredi G, and Haas F. 2001, Phys. Rev. B, 64:075316 22 Sze S M, and Ng K K. 2007, Physics of Semiconductor evices. Wiley, Hoboken, NJ 23 Hohenberg P, and Kohn W. 1964, Phys. Rev. B, 136:864 24 Kohn W, and Sham L J. 1965, Phys. Rev. A, 140: 1133

Catalog

    Article views (332) PDF downloads (911) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return