Advanced Search+
YANG Wei (杨薇), DONG Zhiwei (董志伟). Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model[J]. Plasma Science and Technology, 2016, 18(1): 12-16. DOI: 10.1088/1009-0630/18/1/03
Citation: YANG Wei (杨薇), DONG Zhiwei (董志伟). Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model[J]. Plasma Science and Technology, 2016, 18(1): 12-16. DOI: 10.1088/1009-0630/18/1/03

Electron-Vibrational Energy Exchange in Nitrogen-Containing Plasma: a Comparison Between an Analytical Approach and a Kinetic Model

Funds: supported by National Natural Science Foundation of China (No. 11505015) and the National High-Tech Research and Development Program of China (863 Program)
More Information
  • Received Date: August 30, 2015
  • This paper investigates the electron-vibrational (e-V) energy exchange in nitrogen-containing plasma, which is very efficient in the case of gas discharge and high speed flow. Based on Harmonic oscillator approximation and the assumption of the e-V relaxation through a continuous series of Boltzmann distributions over the vibrational states, an analytic approach is derived from the proposed scaling relation of e-V transition rates. A full kinetic model is then investigated by numerically solving the state-to-state master equation for all vibrational levels. The analytical approach leads to a Landau-Teller (LT)-type equation for relaxation of vibrational energy, and predicts the relaxation time on the right order of magnitude. By comparison with the kinetic model, the LT-type equation is valid in typical electron temperatures in gas discharge. However, the analytical approach is not capable of describing the vibrational distribution function during the e-V process in which a full kinetic model is required.
  • 1 Capitelli M, Ferreira C M, Gordiets B F, et al. 2000, Plasma Kinetics in Atmospheric Gases. Springer, New York 2 Lee J H. 1993, J. Thermophys. Heat Transfer, 7: 399 3 Bourdon A and Vervisch P. 1997, Phys. Rev. E, 55: 4634 4 Bourdon A and Vervisch P. 1998, New Model for the Electron-Vibration Coupling in Nonequilibrium Air Flows. 3rd European Symposium on Aerothermodynamics for Space Vehicles, Netherlands 5 Mertens J D. 1999, J. Thermophys. Heat Transfer, 13:204 6 Huo W M, Mckoy V, Lima M A P, et al. 1985, Electron Nitrogen Molecule Collisions in High-Temperature Nonequilibrium Air. AIAA 20th Thermophysics Conference, Williamsburg (Thermophysical Aspects of Reentry Flows, 103: 152 AIAA, New York, 1986) 7 Laporta V, Celiberto R and Wadehra J M. 2012, Plasma Sources Sci. Technol., 21: 055018 8 Laporta V, Little D A, Celiberto R, et al. 2014, Plasma Sources Sci. Technol., 23: 065002 9 Laporta V and Bruno D. 2013, J. Chem. Phys., 138: 104319 10 Heritier K. 2014, Internal energy relaxation in nitrogen plasmas [Master]. University of Illinois at UrbanaChampaign 11 Heritier K L, Jaffe R L, Laporta V, et al. 2014, J. Chem.Phys., 141: 184302 12 Gordiets B F, Ferreira C M, Guerra V L, et al. 1995, IEEE Trans. Plasma Sci., 23: 750 13 Bourdon A, and Vervisch P. 2000, J. Thermophys. Heat Transfer, 14: 489 14 Database of the European union phys4entry project, 2012. http://users.ba.cnr.it/imip/cscpal38/phys4entry/database.html. 15 Sahni O and Jennings W. 1973, J. Chem. Phys., 59: 6070 16 Zhou Qianhong, Dong Zhiwei. 2013, Acta Phys. Sin., 62: 205201 (in Chinese) 17 Itikawa Y. 2006, J. Phys. Chem. Ref. Data, 35: 31 18 Vereshchagin K A, Smirnov V V, Shakhatov V A. 1997,Tech. Phys., 42: 487 19 Filimonov S and Borysow J. 2007, J. Phys. D: Appl.Phys., 40: 2810
  • Related Articles

    [1]Junjie ZHANG, Xin ZHANG, Guoliang PENG, Zeping REN. A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms[J]. Plasma Science and Technology, 2022, 24(5): 054007. DOI: 10.1088/2058-6272/ac5f39
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [4]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [5]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [6]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (346) PDF downloads (865) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return