Advanced Search+
FENG Fan (冯帆), ZHANG Yongliang (张永亮), YAN Jia (闫佳), LIU Fucheng (刘富成), DONG Lifang (董丽芳), HE Yafeng (贺亚峰). Cycloid Motions of Aggregates in a Dust Plasma[J]. Plasma Science and Technology, 2016, 18(1): 67-71. DOI: 10.1088/1009-0630/18/1/12
Citation: FENG Fan (冯帆), ZHANG Yongliang (张永亮), YAN Jia (闫佳), LIU Fucheng (刘富成), DONG Lifang (董丽芳), HE Yafeng (贺亚峰). Cycloid Motions of Aggregates in a Dust Plasma[J]. Plasma Science and Technology, 2016, 18(1): 67-71. DOI: 10.1088/1009-0630/18/1/12

Cycloid Motions of Aggregates in a Dust Plasma

Funds: supported by National Natural Science Foundation of China (Nos. 11205044, 11405042), the Natural Science Foundation of Hebei Province, China (Nos. A2011201006, A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Nos. Y2012009, ZD2015025), and the Midwest Universities Comprehensive Strength Promotion Project of China
More Information
  • Received Date: August 16, 2015
  • Hypocycloid and epicycloid motions of aggregates consisted of one large and one small grains are experimentally observed in an rf dust plasma. The cycloid motions are regarded as combination of a primary circle and a secondary circle. Measurements with high spatiotemporal resolution show that the secondary circle is determined by the initial angle velocity of the dropped aggregate. The primary circle originates from the asymmetry of the aggregate. The small grain in the aggregate always leads the large one as they travelling, which results from the difference of the natural frequency of the two grains. Comparative experiments with regular microspheres show that the cycloid motions are distinctive features of aggregates immersed in a plasma.
  • 1 Morfill G E, Ivlev A V. 2009, Rev. Mod. Phys., 81:1353 2 Fortov V E, Ivlev A V, Khrapak S A, et al. 2005, Phys.Rep., 421: 1 3 Shukla P K, Eliasson B. 2009, Rev. Mod. Phys., 81:25 4 Chu J H, Lin I. 1994, Phys. Rev. Lett., 72: 4009 5 Zhdanov S K, Nosenko V, Thomas H M, et al. 2014,Phys. Rev. E, 89: 023103 6 Arp O, Block D, Piel A, et al. 2004, Phys. Rev. Lett.,93: 165004 7 Bonitz M, Henning C, Block D. 2010, Rep. Prog.Phys., 73: 066501 8 Huang F, Ye M F, Wang L. 2004, Chin. Sci. Bull., 49:2150 (in Chinese) 9 Ott T, Bonitz M. 2014, Phys. Rev. E, 89: 013105 10 Hou L J, Wang Y N. 2005, Phys. Plasmas, 12: 042104 11 Liu D Y, Wang D Z, Liu J Y. 2000, Acta Phys. Sin.,49: 1094 12 Hong X R, Duan W S, Sun J A, et al. 2003, Acta Phys.Sin., 52: 2671 13 Ma J X, Yu M Y, Liu J Y. 1997, Phys. Rev. E, 55:014627 14 Yousefi R, Davis A B, Carmona-Reyes J, et al. 2014,Phys. Rev. E, 90: 033101 15 Tsytovich V N, Sato N, Morfill G E. 2003, New J.Phys., 5: 43 16 Karasev V Y, Dzlieva E S, Eikhvald A I, et al. 2009,Phys. Rev. E, 79: 026406 17 Mahmoodi J, Shukla P K, Tsintsadze N L, et al. 2000,Phys. Rev. Lett., 84: 2626 18 Melzer A, Trottenberg T, Piel A. 1994, Phys. Lett. A,191: 301 19 Piel A, Melzer A. 2002, Plasma Phys. Control. Fusion,44: R1 20 Fortov V E, Nefedov A P, Molotkov V I, et al. 2001,Phys. Rev. Lett., 87: 205002 21 Ikkurthi V R, Matyash K, Melzer A, et al. 2008, Phys.Plasmas, 15: 123704 22 Killer C, Mulsow M, Melzer A. 2015, Plasma Sources Sci. Technol., 24: 025029 23 Borg K I, S¨ oderholm L H, Ess′ en H. 2003, Phys. Fluids, 15: 736 24 Weidman P D, Herczynski A. 2004, Phys. Fluids, 16:L9

Catalog

    Article views (491) PDF downloads (694) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return