Advanced Search+
Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
Citation: Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06

Electron Temperature Measurement by Floating Probe Method Using AC Voltage

More Information
  • Received Date: September 27, 2015
  • This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.
  • 1 Chhowalla M, Teo K B K, Ducati C, et al. 2001, J.Appl. Phys., 90: 5308 2 Choy K L. 2003, Prog. Mater. Sci., 48: 57 3 Pai P G, Chao S S, Takagi Y, et al. 1986, J. Vac. Sci.Technol. A, 4: 689 4 Chu P K, Chen J Y, Wang L P, et al. 2002, Mat. Sci.Eng. R., 36: 143 5 Hopwood J. 1992, Plasma Sources Sci. Technol., 1: 109 6 Mayrhofer P H, Mitterer C, Hultman L, et al. 2006,Prog. Mater. Sci., 51: 1032 7 Coburn J W and Winters H F. 1979, J. Appl. Phys.,50: 3189 8 Pearton S J, Norton D P, Ip K, et al. 2005, Prog.Mater. Sci., 50: 293 9 Pearton S J, Zolper J C, Shul R J, et al. 1999, J. Appl.Phys., 86: 1 10 Lindl J. 1995, Phys. Plasmas, 2: 3933 11 Booth J P, Curley G, Maric D, et al. 2010, Plasma Sources Sci. Technol., 19: 015005 12 Braithwaite N S J, Sheridan T E, and Boswell R W.2003, J. Phys. D: Appl. Phys., 36: 2837 13 Mott-Smith H M and Langmuir I. 1926, Phys. Rev.,28: 727 14 Kokura H, Nakamura K, Ghanashev I P, et al. 1999,Jpn. J. Appl. Phys., 38: 5262 15 Takayama K, Ikegami H, and Miyazaki S. 1960, Phys.Rev. Lett., 5: 238 16 Hosea J C, Jobes F C, Hickok R L, et al. 1973, Phys.Rev. Lett., 30: 839 17 Booth J and Hancock G. 1993, Mater. Sci. Forum, 140:219 18 Auciello O and Flamm D L. 1989, Plasma Diagnostics:Discharge Parameters and Chemistry. Academic Press,London 19 Lieberman M A and Lichtenberg A J. 2005, Principles of Plasma Discharges and Materials Processing. Wiley, New York 20 Howatson A M. 2013, An Introduction to Gas Discharges. Elsevier, Amsterdam 21 Chapman B. 1980, Glow Discharge Processes:Sputtering and Plasma Etching. Wiley, New York 22 Braithwaite N S J, Booth J, and Cunge G. 1996,Plasma Sources Sci. Technol., 5: 677 23 Lee M H, Jang S H, and Chung C W. 2007, J. Appl.Phys., 101: 033305
  • Related Articles

    [1]Bei Ye, Ge Gao, Shusheng Wang , Ya Li, Qian Jiang. Research on grounding protection system of the central solenoid model coil of the CRAFT[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adbc34
    [2]Chong GAO, Zhongjian KANG, Dajian GONG, Yang ZHANG, Yufang WANG, Yiming SUN. Novel method for identifying the stages of discharge underwater based on impedance change characteristic[J]. Plasma Science and Technology, 2024, 26(4): 045503. DOI: 10.1088/2058-6272/ad0d56
    [3]Haibing LI (李海冰), Jie ZHU (朱杰), Wei YANG (杨威), Xu ZHANG (张旭), Donglai WANG (王东来), Junyu ZHU (朱俊谕), Xingming BIAN (卞星明). Humidity effects on the ground-level resultant electric field of positive DC conductors[J]. Plasma Science and Technology, 2019, 21(7): 74001-074001. DOI: 10.1088/2058-6272/ab0a3f
    [4]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [5]Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea
    [6]Rokibul ISLAM, Shuzheng XIE, Karl R ENGLUND, Patrick D PEDROW. Plasma polymerized acetylene deposition using a return corona enhanced plasma reactor[J]. Plasma Science and Technology, 2017, 19(8): 85501-085501. DOI: 10.1088/2058-6272/aa6bef
    [7]Yonggang WANG (王永刚), Liqing TONG (童立青), Kefu LIU (刘克富). Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources[J]. Plasma Science and Technology, 2017, 19(6): 64002-064002. DOI: 10.1088/2058-6272/aa6153
    [8]Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
    [9]GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05
    [10]ZHENG Na (郑娜), ZHONG Chunlai (钟春来), FAN Tieshuan(樊铁栓). The Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model[J]. Plasma Science and Technology, 2012, 14(6): 521-525. DOI: 10.1088/1009-0630/14/6/19

Catalog

    Article views (275) PDF downloads (667) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return