Advanced Search+
QIAN Jinping (钱金平), GONG Xianzu (龚先祖), WAN Baonian (万宝年), LIU Fukun (刘甫坤), WANG Mao (王茂), XU Handong (徐旵东), HU Chundong (胡纯栋), WANG Liang (王亮), LI Erzhong (李二众), ZENG Long (曾龙), TI Ang (提昂), SHEN Biao (沈飚), LIN Shiyao (林士耀), SHAO Linming (邵林明), ZANG Qing (臧庆), LIU Haiqing (刘海庆), ZHANG Bin (张斌), SUN Youwen (孙有文), XU Guosheng (徐国盛), LIANG Yunfeng (梁云峰), XIAO Bingjia (肖炳甲), HU Liqun (胡立群), LI Jiangang (李建刚), the EAST Team. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST[J]. Plasma Science and Technology, 2016, 18(5): 457-459. DOI: 10.1088/1009-0630/18/5/01
Citation: QIAN Jinping (钱金平), GONG Xianzu (龚先祖), WAN Baonian (万宝年), LIU Fukun (刘甫坤), WANG Mao (王茂), XU Handong (徐旵东), HU Chundong (胡纯栋), WANG Liang (王亮), LI Erzhong (李二众), ZENG Long (曾龙), TI Ang (提昂), SHEN Biao (沈飚), LIN Shiyao (林士耀), SHAO Linming (邵林明), ZANG Qing (臧庆), LIU Haiqing (刘海庆), ZHANG Bin (张斌), SUN Youwen (孙有文), XU Guosheng (徐国盛), LIANG Yunfeng (梁云峰), XIAO Bingjia (肖炳甲), HU Liqun (胡立群), LI Jiangang (李建刚), the EAST Team. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST[J]. Plasma Science and Technology, 2016, 18(5): 457-459. DOI: 10.1088/1009-0630/18/5/01

Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST

Funds: supported by the National Magnetic Confinement Fusion Science Foundation of China (Nos. 2015GB102000 and 2014GB103000)
More Information
  • Received Date: April 04, 2016
  • Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor conguration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of >4.5 keV, and a central density ne(0)~2.5×1019 m-3. The plasma current was nearly non-inductive (Vloop <0.05 V, poloidal beta ∼0.9) driven by a combination of 0.6 MW lower hybrid wave at 2.45 GHz, 1.4 MW lower hybrid wave at 4.6 GHz, 0.5 MW electron cyclotron heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated “hybrid” operating scenario of interest to ITER and CFETR.
  • 1 Wan Y X. 2006, Overview progress and future plan of EAST project. Proc. 21st Int. Conf. on Fusion Energy, Chengdu, China 2 Wan B N. 2009, Nucl. Fusion, 49: 104011 3 Li J G, Wan B N, et al. 2011, Nucl. Fusion, 51: 094007 4 Wan B N, Li J G, Guo H Y, et al. 2013, Nucl. Fusion, 53: 104006 5 Qian J P, Gong X Z, Li J G, et al. 2011, Plasma Sci. Technol., 13: 1 6 Fu P, Gao G, Song Z Q, et al. 2008, Fusion Sci. Technol., 54: 1003 7 Wan B N, Li J G, Guo H Y, et al. 2015, Nucl. Fusion, 55: 104015 8 Zhao L M, Shan J F, Liu F K, et al. 2010, Plasma Sci. Technol., 12: 118 9 Ding B J, Qin Y L, Li W K, et al. 2011, Phys. Plasmas, 18: 082510 10 Jia H, Liu F K, Liu L, et al. 2013, Plasma Sci. Technol., 15: 834 11 Liu F K, Ding B J, Li J G, et al. 2015, Nucl. Fusion, 55: 123022 12 Wang X J, Liu F K, Shan J F, et al. 2013, Radiofrequency Power in Plasmas: Proceedings of the 20th Topical Conference. http://dx.doi.org/10.1063/1.4864607 13 Yuan Q P, Xiao B J, Luo Z P, et al. 2013, Nucl. Fusion, 53: 043009 14 Qian J P, et al. 2013, Integration of plasma control towards steady-state operation on EAST. 7th IAEA Technical Meeting on Steady State Operatoin of Magnetic Fusion Devices AXI France, oral 15 Gan K F, Li M H, Wang F M, et al. 2013, J. Nucl. Mater., 438: 364 16 Xu G S, Wan B N, Li J G, et al. 2011, Nucl. Fusion, 51: 072001 17 Zheng X W, Li J G, Hu J S, et al. 2013, Plasma Phys. Control. Fusion, 55: 115010 18 Litaudon X, Tore Supra Team. 2009, Fusion Sci. Technol., 56: 1445 19 Camenen Y, Pochelon A, Bottino A, et al. 2005, Plasma Phys. Control. Fusion, 47: 1971 20 Gormezano C, Sips A C C, Luce T C, et al. 2007, Nucl. Fusion, 47: S285 21 Wan B N, Ding S, Qian J, et al. 2014, IEEE Trans. Plasma Sci., 42: 495
  • Related Articles

    [1]Ying Wang, Nie Chen, Jingfeng Yao, Evgeniy Bogdanov, Anatoly Kudryavtsev, Chengxun Yuan, Zhongxiang Zhou. Towards the creation of an inverse electron distribution function in two-chamber inductively coupled plasma discharges[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adb895
    [2]You HE, Yeong-Min LIM, Jun-Ho LEE, Ju-Ho KIM, Moo-Young LEE, Chin-Wook CHUNG. Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma[J]. Plasma Science and Technology, 2023, 25(4): 045401. DOI: 10.1088/2058-6272/ac9b9f
    [3]N A ASHURBEKOV, K O IMINOV, K M RABADANOV, G S SHAKHSINOV, M Z ZAKARYAEVA, M B KURBANGADZHIEVA. Simulation of the spatio-temporal evolution of the electron energy distribution function in a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2023, 25(3): 035405. DOI: 10.1088/2058-6272/ac9aa8
    [4]Xinjing CAI (蔡新景), Xinxin WANG (王新新), Xiaobing ZOU (邹晓兵). Electron relaxation properties of Ar magnetron plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35405-035405. DOI: 10.1088/2058-6272/aaa3d6
    [5]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [6]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [7]Fereshteh GOLIAN, Ali PAZIRANDEH, Saeed MOHAMMADI. A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor[J]. Plasma Science and Technology, 2015, 17(6): 441-447. DOI: 10.1088/1009-0630/17/6/01
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [10]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22

Catalog

    Article views (470) PDF downloads (807) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return