Advanced Search+
WU Haixia (武海霞), FANG Zhi (方志), ZHOU Tong (周侗), LU Chen (陆晨), XU Yanhua (徐炎华). Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(5): 500-505. DOI: 10.1088/1009-0630/18/5/10
Citation: WU Haixia (武海霞), FANG Zhi (方志), ZHOU Tong (周侗), LU Chen (陆晨), XU Yanhua (徐炎华). Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(5): 500-505. DOI: 10.1088/1009-0630/18/5/10

Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

Funds: supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131412, BK20150951)
More Information
  • Received Date: September 08, 2015
  • A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe2+ /DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses.
  • 1 Doj?cinovi′c P B, Rogli′c G M, Obradovi′c B M, et al. 2011, J. Hazard. Mater., 192: 763 2 Hua Y M, Bai Y H, Li X J, et al. 2013, Sep. Purif.Technol., 120: 191 3 Ni M J, Yang H, Chen T, et al. 2015, Plasma Sci.Technol., 17: 209 4 Haddou N, Ghezzar M R, Abdelmalek F, et al. 2013,Plasma Sci. Technol., 15: 916 5 Lin Q F, Ni G H, Jiang Y M, et al. 2014, Plasma Sci.Technol., 16: 1036 6 Ghezzar M R, Ognier S, Cavadias S, et al. 2013, Sep.Purif. Technol., 104: 250 7 Li J, Wang T C, Lu N, et al. 2011, Plasma Sources Sci. Technol., 20: 034019 8 Wang X Y, Zhou M H, Jin X L. 2012, Electrochim.Acta, 83: 501 9 Jiang B, Zheng J T, Qiu S, et al. 2014, J. Chem. Eng.,236: 348 10 Wu H X, Fang Z, Xu Y H. 2015, Plasma Sci. Technol.,17: 228 11 Li S P, Ma X L, Jiang Y Y, et al. 2014, Ecotox. Environ. Safe, 106: 146 12 Manoj K R P, Rama R B, Karuppiah J, et al. 2013, J.Chem. Eng., 217: 41 13 Manoj K R P, Mahammadunnisa S, Subrahmanyam C. 2014, J. Chem. Eng., 238: 157 14 Jovi′ c M S, Doj? cinovi′ c B P, Kova? cevi′ c V V, et al. 2014,J. Chem. Eng., 248: 63 15 Young S M, Jin O J, Jin C W. 2008, J. Chem. Eng.,142: 56 16 Wang T C, Lu N, Tao J, et al. 2012, Sep. Purif. Technol., 100: 9 17 Yang D Z, Wang W C, Li J, et al. 2011, J. Appl. Phys.,109: 073308 18 Bdaer H, Hoigne J 1981, Water Res., 15: 449 19 Selles R M. 1980, Analyst, 105: 950 20 Ognier S, Iya-Sou D, Fourmond C S, et al. 2009,Plasma Chem. Plasma Process., 29: 261 21 Li X W, Li J W, Wu Y F, et al. 2010, High Voltage Eng., 36: 752 (in Chinese) 22 Gu X P, Fang Z, Qian C. 2014, High Power Laser and Particle Beams, 26: 075001 (in Chinese) 23 Buxton G V, Greenstock C L, Helman W P, et al.1987, J. Phys. Chem. Ref. Data, 17: 513 24 Sun B, Sato M, Clements J S. 1997, J. Electrostat.,39: 189 25 Joshi A A, Locke B R, Arce P, et al. 1995, J. Hazard.Mater., 41: 3 26 Malik M A, Ghaffar A, Malik S A. 2001, Plasma Sources Sci. Technol., 10: 82 27 Biljana P D, Goran M R, Bratislav M O, et al. 2011,J. Hazard. Mater., 192: 763
  • Related Articles

    [1]Junjie ZHANG, Xin ZHANG, Guoliang PENG, Zeping REN. A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms[J]. Plasma Science and Technology, 2022, 24(5): 054007. DOI: 10.1088/2058-6272/ac5f39
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [4]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [5]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [6]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (367) PDF downloads (651) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return