Advanced Search+
GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
Citation: GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02

Infrared Imaging Bolometer for the HL-2A Tokamak

Funds: supported by National Natural Science Foundation of China (Nos. 10805016 and 11175061), and the Chinese National Fusion Project for ITER (No. 2014GB109001)
More Information
  • Received Date: March 14, 2015
  • An infrared imaging bolometer diagnostic has been upgraded recently to be adapted for the complications of the signal-to-noise ratio arising from the low level of plasma radiation and high reflectivity of low energy photon (<6.2 eV). It utilizes a platinum foil, blackened on both sides with graphite spray, as the bolometer detector. The advantage of the blackened foil is the light absorption extending into the infrared. After a careful calibration of the foil, the incident power density distribution on the foil is determined by solving the heat diffusion equation with a numerical technique. The local plasma radiated power density is reconstructed with a minimum fisher information regularization method by assuming plasma emission toroidal symmetry. Com?parisons of the results and the profiles measured by an ordinary bolometric detector demonstrate that this method is good enough to provide the plasma radiated power pattern. The typical plasma radiated power density distribution before and after high mode (H-mode) transition is firstly reconstructed with the infrared imaging bolometer. Moreover, during supersonic molecular beam injection (SMBI), an enhanced radiation region is observed at the edge of the plasma.
  • 1 Boivin R L, Goetz J A, Marmar E S, et al. 1999, Rev.Sci. Instrum., 70: 260 2 Meister H, Giannone L, Horton L D, et al. 2008, Rev.Sci. Instrum., 79: 10F511 3 Strait E J. 2015, Physics of Plasmas, 22: 021803 4 Peterson B J, Miyazama J, Nishimura K, et al. 2006,Plasma and Fusion Research, 1: 45 5 Peterson B J, Osakabe M, Shoji M, et al. 2001, Rev. Sci.Instrum., 72: 923 6 Peterson B J. 2000, Rev. Sci. Instrum., 71: 3696 7 Wurden G A and Peterson B J. 1999, Rev. Sci. Instrum.,70: 255 8 Liu Y, Tamura N, Peterson B J, et al. 2007, Plasma and Fusion Research, 2: S1124 9 Harris L, Mcginnies R T, Siegel B M. 1948, J. Opt. Soc.Am., 38: 582 10 Gao J M, Liu Y, Li W, et al. 2013, Rev. Sci. Instrum.,84: 093503 11 Gao J M, Liu Y, Li W, et al. 2014, Rev. Sci. Instrum.,85: 043505 12 Duan X R, Dong J Q, Yan L W, et al. 2010, Nucl. Fusion, 50: 095011 13 Yang S M and Tao W S. Heat Transfer. Higher Education Press, Beijing (in Chinese) 14 Parchamy H, Peterson B J, Konoshima S, et al. 2006,Rev. Sci. Instrum., 77: 10E515 15 He H D, Dong J Q, Zhang J H, et al. 2007, Chin. Phys.Lett., 24: 497 16 Gao J M, Liu Y, Li W, et al. 2010, Chin. Phys. B, 19:115201 17 Xiao W W, Diamond P H, Zou X L, et al. 2012, Nucl.Fusion, 52: 114027
  • Related Articles

    [1]Zijie LIU, Tianbo WANG, Muquan WU, Zhengping LUO, Shuo WANG, Tengfei SUN, Bingjia XIAO, Jiangang LI. Plasma current tomography for HL-2A based on Bayesian inference[J]. Plasma Science and Technology, 2024, 26(5): 055601. DOI: 10.1088/2058-6272/ad1980
    [2]Bingli LI (李兵利), Tianbo WANG (王天博), Lin NIE (聂林), Ting LONG (龙婷), Zijie LIU (刘自结), Hao WU (吴豪), Rui KE (柯锐), Zhanhui WANG (王占辉), Yi YU (余羿), Min XU (许敏). Tomography of emissivity for Doppler coherence imaging spectroscopy diagnostic in HL-2A[J]. Plasma Science and Technology, 2021, 23(9): 95104-095104. DOI: 10.1088/2058-6272/ac0490
    [3]Ruggero BARNI, Stefano CALDIROLA, Luca FATTORINI, Claudia RICCARDI. Tomography of a simply magnetized toroidal plasma[J]. Plasma Science and Technology, 2018, 20(2): 25102-025102. DOI: 10.1088/2058-6272/aa9028
    [4]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [5]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [6]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [7]Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2
    [8]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [9]CHEN Wenguang (陈文光), RAO Jun (饶军), LI Bo (李波), LEI Guangjiu (雷光玖), CAO Jianyong (曹建勇), WANG Mingwei (王明伟), KANG Zihua (康自华), FENG Kun (冯鲲), HL-A NBI Group. Technical Design of Arc-Discharge and Deceleration Power Supply for MW Level NBI System on HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 936-940. DOI: 10.1088/1009-0630/14/10/15
    [10]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14
  • Cited by

    Periodical cited type(24)

    1. Li, C., Zhao, T., Ren, W. et al. Quantitative analysis of copper-molybdenum slurries based on low energy pulse laser, combined with artificial neural network and principal component analysis. Minerals Engineering, 2024. DOI:10.1016/j.mineng.2024.109010
    2. Spencer, J., Squires, B., McWilliams, B. et al. Laser induced breakdown spectroscopy for composition monitoring of graded Al–Cu alloy surface. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131375
    3. Zeng, Q.-D., Chen, G.-H., Li, W.-X. et al. Classification of Special Steel Based on LIBS Combined With Particle Swarm Optimization and Support Vector Machine | [基于粒子群M支持向量机算法的激光诱导 击穿光谱钢铁快速检测与分类]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(6): 1559-1565. DOI:10.3964/j.issn.1000-0593(2024)06-1559-07
    4. Han, B., Chen, Z., Feng, J. et al. Identification and classification of metal copper based on laser-induced breakdown spectroscopy. Journal of Laser Applications, 2023, 35(3): 032011. DOI:10.2351/7.0001051
    5. Akram, M.A., Holthe, R., Ringen, G. Rapid Sorting of Post-consumer Scrap Aluminium Alloys Based on Laser-Induced Breakdown Spectroscopy (LIBS). IFIP Advances in Information and Communication Technology, 2023. DOI:10.1007/978-3-031-43688-8_18
    6. Zeng, Q., Chen, G., Li, W. et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine. Plasma Science and Technology, 2022, 24(8): 084009. DOI:10.1088/2058-6272/ac72e3
    7. Xu, C., Li, F., Chen, F. et al. Rapid Classification of Laser Induced Breakdown Spectroscopy of Titanium Alloys | [钛合金的激光诱导击穿光谱快速分类]. Guangzi Xuebao/Acta Photonica Sinica, 2022, 51(4): 176-186. DOI:10.3788/gzxb20225104.0430001
    8. Chen, G., Zeng, Q., Li, W. et al. Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network. Optics Express, 2022, 30(6): 9428-9440. DOI:10.1364/OE.451969
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Chen, T., Sun, L., Yu, H. et al. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry. Applied Optics, 2022, 61(7): D22-D29. DOI:10.1364/AO.441098
    11. Aberkane, S.M., Melikechi, N., Yahiaoui, K. LIBS Spectral Treatment. Chemometrics and Numerical Methods in LIBS, 2022. DOI:10.1002/9781119759614.ch4
    12. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    13. You, W., Xia, Y.-P., Huang, Y.-T. et al. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree | [基于CART回归树的LIBS特征变量选择方法研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(10): 3240-3244. DOI:10.3964/j.issn.1000-0593(2021)10-3240-05
    14. Kim, H., Lee, J., Srivastava, E. et al. Front-end signal processing for metal scrap classification using online measurements based on laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106282
    15. Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. DOI:10.1016/j.resconrec.2021.105462
    16. Wang, Y.-W., Zhang, Y., Chen, X.-F. et al. Application progress of laser-induced breakdown spectroscopy in online analysis of metal materials | [激光诱导击穿光谱在金属材料在线分析方面的应用进展]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 7-13. DOI:10.13228/j.boyuan.issn1000-7571.011179
    17. Zhang, Y., Sun, C., Yue, Z. et al. Correlation-based carbon determination in steel without explicitly involving carbon-related emission lines in a LIBS spectrum. Optics Express, 2020, 28(21): 32019-32032. DOI:10.1364/OE.404722
    18. Ytsma, C.R., Knudson, C.A., Dyar, M.D. et al. Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105946
    19. Kim, E., Kim, Y., Srivastava, E. et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020. DOI:10.1016/j.chemolab.2020.104072
    20. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    21. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    22. Srivastava, E., Jang, H., Shin, S. et al. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines. Plasma Science and Technology, 2020, 22(1): 015501. DOI:10.1088/2058-6272/ab481e
    23. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    24. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (314) PDF downloads (496) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return