1. |
Li, C., Zhao, T., Ren, W. et al. Quantitative analysis of copper-molybdenum slurries based on low energy pulse laser, combined with artificial neural network and principal component analysis. Minerals Engineering, 2024.
DOI:10.1016/j.mineng.2024.109010
|
2. |
Spencer, J., Squires, B., McWilliams, B. et al. Laser induced breakdown spectroscopy for composition monitoring of graded Al–Cu alloy surface. Surface and Coatings Technology, 2024.
DOI:10.1016/j.surfcoat.2024.131375
|
3. |
Zeng, Q.-D., Chen, G.-H., Li, W.-X. et al. Classification of Special Steel Based on LIBS Combined With Particle Swarm Optimization and Support Vector Machine | [基于粒子群M支持向量机算法的激光诱导 击穿光谱钢铁快速检测与分类]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(6): 1559-1565.
DOI:10.3964/j.issn.1000-0593(2024)06-1559-07
|
|
4. |
Han, B., Chen, Z., Feng, J. et al. Identification and classification of metal copper based on laser-induced breakdown spectroscopy. Journal of Laser Applications, 2023, 35(3): 032011.
DOI:10.2351/7.0001051
|
5. |
Akram, M.A., Holthe, R., Ringen, G. Rapid Sorting of Post-consumer Scrap Aluminium Alloys Based on Laser-Induced Breakdown Spectroscopy (LIBS). IFIP Advances in Information and Communication Technology, 2023.
DOI:10.1007/978-3-031-43688-8_18
|
6. |
Zeng, Q., Chen, G., Li, W. et al. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine. Plasma Science and Technology, 2022, 24(8): 084009.
DOI:10.1088/2058-6272/ac72e3
|
7. |
Xu, C., Li, F., Chen, F. et al. Rapid Classification of Laser Induced Breakdown Spectroscopy of Titanium Alloys | [钛合金的激光诱导击穿光谱快速分类]. Guangzi Xuebao/Acta Photonica Sinica, 2022, 51(4): 176-186.
DOI:10.3788/gzxb20225104.0430001
|
|
8. |
Chen, G., Zeng, Q., Li, W. et al. Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network. Optics Express, 2022, 30(6): 9428-9440.
DOI:10.1364/OE.451969
|
9. |
Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185.
DOI:10.46770/AS.2021.609
|
10. |
Chen, T., Sun, L., Yu, H. et al. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry. Applied Optics, 2022, 61(7): D22-D29.
DOI:10.1364/AO.441098
|
11. |
Aberkane, S.M., Melikechi, N., Yahiaoui, K. LIBS Spectral Treatment. Chemometrics and Numerical Methods in LIBS, 2022.
DOI:10.1002/9781119759614.ch4
|
12. |
Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274.
DOI:10.3390/app11199274
|
13. |
You, W., Xia, Y.-P., Huang, Y.-T. et al. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree | [基于CART回归树的LIBS特征变量选择方法研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(10): 3240-3244.
DOI:10.3964/j.issn.1000-0593(2021)10-3240-05
|
|
14. |
Kim, H., Lee, J., Srivastava, E. et al. Front-end signal processing for metal scrap classification using online measurements based on laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021.
DOI:10.1016/j.sab.2021.106282
|
15. |
Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021.
DOI:10.1016/j.resconrec.2021.105462
|
16. |
Wang, Y.-W., Zhang, Y., Chen, X.-F. et al. Application progress of laser-induced breakdown spectroscopy in online analysis of metal materials | [激光诱导击穿光谱在金属材料在线分析方面的应用进展]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 7-13.
DOI:10.13228/j.boyuan.issn1000-7571.011179
|
|
17. |
Zhang, Y., Sun, C., Yue, Z. et al. Correlation-based carbon determination in steel without explicitly involving carbon-related emission lines in a LIBS spectrum. Optics Express, 2020, 28(21): 32019-32032.
DOI:10.1364/OE.404722
|
18. |
Ytsma, C.R., Knudson, C.A., Dyar, M.D. et al. Accuracies and detection limits of major, minor, and trace element quantification in rocks by portable laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020.
DOI:10.1016/j.sab.2020.105946
|
19. |
Kim, E., Kim, Y., Srivastava, E. et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2020.
DOI:10.1016/j.chemolab.2020.104072
|
20. |
Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002.
DOI:10.1088/2058-6272/ab76b4
|
21. |
Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011.
DOI:10.1088/2058-6272/ab7d48
|
22. |
Srivastava, E., Jang, H., Shin, S. et al. Weighted-averaging-based classification of laser-induced breakdown spectroscopy measurements using most informative spectral lines. Plasma Science and Technology, 2020, 22(1): 015501.
DOI:10.1088/2058-6272/ab481e
|
23. |
Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216.
DOI:10.1039/c9ja90058f
|
24. |
Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101.
DOI:10.1088/2058-6272/aaf873
|