Advanced Search+
Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401
Citation: Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401

Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas

Funds: This research is supported by the Scienti?c Research Project Fund of Middle East Technical University, under project # BAP-08-11-2016-044.
More Information
  • Received Date: May 23, 2016
  • Nonlinear behavior of glow discharge plasmas is experimentally investigated. The glow is generated between a barrier semiconductor electrode, Chromium doped namely Gallium Arsenide (GaAs:Cr), as a cathode and an Indium–Tin Oxide (ITO) coated glass electrode as an anode, in reverse bias. The planar nature of electrodes provides symmetry in spatial geometry. The discharge behaves oscillatory in the time domain, with single and sometimes multi¬periodicities in plasma current and voltage characteristics. In this paper, harmonic frequency generation and transition to chaotic behavior is investigated. The observed current–voltage characteristics of the discharge are discussed in detail.
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    Bogaerts A et al 2002 Spectrochim. Acta B 57 609
    [3]
    Takan T et al 2016 Opt. Quantum Electron. 48 292
    [4]
    Klinger T et al 2001 Phys. Plasmas 8 1961
    [5]
    Astrov Y et al 1998 Phys. Rev. Lett. 80 5341
    [6]
    Astrov Y A and Purwins H 2002 Tech. Phys. Lett. 28 910
    [7]
    Purwins H G, B?deker H U and Amiranashvili S 2010 Adv. Phys. 59 485
    [8]
    Strümpel C, Astrov Y A and Purwins H G 2002 Phys. Rev. E 65 066210
    [9]
    Ammelt E, Astrov Y A and Purwins H G 1997 Phys. Rev. E 55 6731
    [10]
    B?deker H U et al 2004 New J. Phys. 6 62
    [11]
    Rafatov I R, ?ija?i? D D and Ebert U. 2007 Phys. Rev. E 76 036206
    [12]
    Trunec D, Brablec A and Buchta J. 2001 J. Phys. D: Appl. Phys. 34 1697
    [13]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [14]
    Sublet A et al 2006 Plasma Sources Sci. Technol. 15 627
    [15]
    Golubovskii Y B et al 2006 J. Phys. D: Appl. Phys. 39 1574
    [16]
    Salamov B G 2004 J. Phys. D: Appl. Phys. 37 2496
    [17]
    Shang W 2007 A survey on pattern formation in DC gas discharge systems PhD Münster University, Münster, Germany
    [18]
    Raizer Y P 1991 Gas Discharge Physics (Berlin, Heidelberg: Springer)
    [19]
    Bode M and Purwins H G 1995 Physica D 86 53
    [20]
    http://physics.nist.gov/PhysRefData/Handbook/Tables/ nitrogentable2.htm
    [21]
    Strümpel C, Astrov Y and Purwins H-G. 2000 Phys. Rev. E 62 4889
    [22]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley)
    [23]
    Deka U, Rao A and Nurujjaman M 2015 Phys. Scr. 90 125602
    [24]
    Uzun-Kaymak I U and Skiff F 2006 Phys. Plasmas 13 112108
    [25]
    Nikias C L and Mendel J M 1993 IEEE Signal Process. Mag. 10 10

Catalog

    Article views (276) PDF downloads (551) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return