Advanced Search+
Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505
Citation: Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505

Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

Funds: supported by National Nature Science Foundation of China under Grant Nos. 61178022 and 61575030. Research funds for the Doctoral program of Higher Education of China (No. 0112216120006,20122216120009) and also supported by the Science and Technology Department of Changchou City (No. 14KP007).
More Information
  • Received Date: January 05, 2016
  • In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.
  • [1]
    Haverkamp J D et al 2008 J. Phys. D: Appl. Phys. 42 025201
    [2]
    Chrisey D B and Hubler G K 1994 Pulsed Laser Deposition of Thin Films (Milton: Wiley)
    [3]
    Rai V N et al 2003 Appl. Optics 42 18
    [4]
    Sizyuk V, Hassanein A and Sizyuk T 2007 Laser & Part. Beams 25 143
    [5]
    Harilal S S, O’Shay B and Tillack M S 2005 J. Appl. Phys. 98 036102
    [6]
    Ott E and Mannheimer W M 1977 Nucl. Fusion 17 1057
    [7]
    Mostovych A N, Rapin B H and Stamper J A 1989 Phys. Rev. Lett. 62 2837
    [8]
    Gosling J 1993 Phys. Fluids B 5 2638
    [9]
    Glass A J 1986 J. Vac. Technol. A 4 1098
    [10]
    Peterson R R et al 2002 Phys. Plasmas Phys. 9 2287
    [11]
    Sappy A D and Gamble T K 1992 J. Appl. Phys. 72 5095
    [12]
    Neogi A and Thareja R K 1999 J. Appl. Phys. 85 1131
    [13]
    Winske D 1989 Phys. Fluids B Plasma Phys. 1 1900
    [14]
    Atif H et al 2015 Plasma Sci. Technol. 17 693
    [15]
    Patel D N, Pandey P K and Thareja R K 2013 Phys. Plasmas 20 103503
    [16]
    Neogi A and Thareja R K 1999 Phys. Plasmas 6 365
    [17]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [18]
    Farid N et al 2013 Appl. Phys. Lett. 103 191112
    [19]
    Kumar A, Singh R K and Joshi H 2011 Spectrochim. Acta Part B 66 444
    [20]
    Radziemski L J and Cremers D A 1989 Laser Induced Plasma and Applications (New York: Marcel Dekker)
    [21]
    Zheng J P et al 1989 Appl. Phys. Lett. 54 954
    [22]
    Andrea T J and Klaus R 1999 J. Phys. D 32 21
    [23]
    Nakimana A et al 2013 J. Phys. D: Appl. Phys. 46 285204
    [24]
    Harilal S S et al 1998 Appl. Phys. Lett. 72 167
    [25]
    Harilal S S et al 2005 IEEE Trans. Plasma Sci. 33 474
    [26]
    Singh R K et al 2007 J. Appl. Phys. 101 103301
    [27]
    Kokai F, Koga Y and Heimann R B 1996 Appl. Surf. Sci. 96 261
    [28]
    Qindeel R et al 2011 Optoelectronics Adv. Mater. -Rapid Comm. 5 331–5
    [29]
    Rai V N, Shukla M and Pant H C 1999 Pramana-J. Phys. 52 49
    [30]
    Bhadra D K 1968 Phys. Fluids 11 234
    [31]
    Harilal S S 2007 J. Appl. Phys. 102 123306
    [32]
    Liu T H et al 2014 Chin. Phys. B 23 085203
  • Related Articles

    [1]Wenchao ZHU (朱文超), Bangdou HUANG (黄邦斗), Ximing ZHU (朱悉铭), Wencong CHEN (陈文聪), Yikang PU (蒲以康). Investigation on the streamer propagation in atmospheric pressure helium plasma jet by the capacitive probe[J]. Plasma Science and Technology, 2020, 22(5): 52001-052001. DOI: 10.1088/2058-6272/ab6a45
    [2]Jianyi CHEN (陈建义), Chengxun YUAN (袁承勋), Xiudong SUN (孙秀冬), Lei HUO (霍雷). Transmissivity of electromagnetic wave propagating in magnetized plasma sheath using variational method[J]. Plasma Science and Technology, 2019, 21(12): 125001. DOI: 10.1088/2058-6272/ab4199
    [3]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [4]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [5]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [6]Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
    [7]Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
    [8]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [9]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [10]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06

Catalog

    Article views (232) PDF downloads (616) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return