Advanced Search+
Yafeng BAI (白亚锋), Shiyi ZHOU (周诗怡), Yushan ZENG (曾雨珊), Yihan LIANG (梁亦寒), Rong QI (齐荣), Wentao LI (李文涛), Ye TIAN(田野), Xiaoya LI (李晓亚), Jiansheng LIU (刘建胜). Optical measurements and analytical modeling of magnetic field generated in a dieletric target[J]. Plasma Science and Technology, 2018, 20(1): 14010-014010. DOI: 10.1088/2058-6272/aa8c6f
Citation: Yafeng BAI (白亚锋), Shiyi ZHOU (周诗怡), Yushan ZENG (曾雨珊), Yihan LIANG (梁亦寒), Rong QI (齐荣), Wentao LI (李文涛), Ye TIAN(田野), Xiaoya LI (李晓亚), Jiansheng LIU (刘建胜). Optical measurements and analytical modeling of magnetic field generated in a dieletric target[J]. Plasma Science and Technology, 2018, 20(1): 14010-014010. DOI: 10.1088/2058-6272/aa8c6f

Optical measurements and analytical modeling of magnetic field generated in a dieletric target

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 11425418, 11405244, 1127901 and 61521093), the Strategic Priority Research
Program (B) (Grant No. XDB16), and the Open Foundation of the National Key Laboratory of Shock Wave and Detonation Physics.
More Information
  • Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is bserved in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.
  • Related Articles

    [1]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [2]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [3]M HENKEL, D HÖSCHEN, Y LIANG, Y LI, S C LIU, D NICOLAI, N SANDRI, G SATHEESWARAN, N YAN, H X ZHANG, the EAST team. Multi-channel retarding field analyzer for EAST[J]. Plasma Science and Technology, 2018, 20(5): 54001-054001. DOI: 10.1088/2058-6272/aab490
    [4]Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
    [5]Le Chi KIEN. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator[J]. Plasma Science and Technology, 2016, 18(6): 674-679. DOI: 10.1088/1009-0630/18/6/15
    [6]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [7]CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01
    [8]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (282) PDF downloads (456) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return