Advanced Search+
Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
Citation: Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885

Exploration to generate atmospheric pressure glow discharge plasma in air

More Information
  • Received Date: September 22, 2017
  • Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
  • [1]
    Kostov K G et al 2014 Appl. Surf. Sci. 314 367
    [2]
    Nishikawa K and Nojima H 2001 Japan. J. Appl. Phys. 40 L835
    [3]
    Lu X et al 2016 Phys. Rep. 630 1
    [4]
    Laroussi M and Lu X 2005 Appl. Phys. Lett. 87 113902
    [5]
    Massines F et al 2012 Plasma Process. Polym. 9 1041
    [6]
    Cui W S et al 2017 IEEE Trans. Plasma Sci. 45 328
    [7]
    Roth J R, Nourgostar S and Bonds T A 2007 IEEE Trans. Plasma Sci. 35 233
    [8]
    Sun J and Qiu Y P 2015 Plasma Sci. Technol. 17 402
    [9]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [10]
    Roth J R 1995 Industrial Plasma Engineering. Volume 1: Principles (Bristol, PA: Institute of Physic Publishing)
    [11]
    Roth J R 2001 Industrial Plasma Engineering. Volume 2— Applications to Nonthermal Plasma Processing (Boca Raton, FL: CRC Press)
    [12]
    TsaiJT HandKo HC2006 Appl. Phys. Lett. 88 013104
    [13]
    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
    [14]
    Leipold F, Mohamed A A H and Schoenbach K H 2002 High electron density, atmospheric pressure air glow discharges Paper Presented at the Conf. Record of the 25th Int. Power Modulator Symp., 2002 and 2002 High-Voltage Workshop (Hollywood, CA, USA) (IEEE)
    [15]
    Engel A V et al 1933 Z. Phys. 85 144
    [16]
    Kanazawa S et al 1988 J. Phys. D: Appl. Phys. 21 838
    [17]
    Yokoyama T et al 1990 J. Phys. D: Appl. Phys. 23 1125
    [18]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [19]
    Massines F, Messaoudi R and Mayoux C 1998 Plasmas Polym. 3 43
    [20]
    Massines F et al 2003 Surf. Coat. Technol. 174-175 8
    [21]
    Roth J R, Laroussi M and Liu C Y 1992 Experimental generation of a steady-state glow discharge at atmospheric pressure Paper Presented at the IEEE Int. Conf. on Plasma Science, 1992. IEEE Conf. Record—Abstracts (Tampa, FL, USA) (IEEE)
    [22]
    Gadri R B et al 2000 Surf. Coat. Technol. 131 528
    [23]
    Roth J R et al 2005 J. Phys. D: Appl. Phys. 38 555
    [24]
    Urabe K, Sakai O and Tachibana K 2011 J. Phys. D: Appl. Phys. 44 115203
    [25]
    Lee Y H et al 2001 Surf. Coat. Technol. 146-147 474
    [26]
    Duten X et al 2002 IEEE Trans. Plasma Sci. 30 178
    [27]
    Wang D Y et al 2010 IEEE Trans. Plasma Sci. 38 2746
    [28]
    Pai D Z, Lacoste D A and Laux C O 2010 J. Appl. Phys. 107 093303
    [29]
    Shao T et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1830
    [30]
    Liu W et al 2014 Phys. Plasmas 21 7011
    [31]
    Liu W Z 2017 Chin. Phys. Lett. 34 085203
    [32]
    Liu W Z et al 2017 Europhys. Lett. 118 45001
    [33]
    Liu W Z et al 2017 Appl. Phys. Lett. 110 024102
    [34]
    Liu W et al 2017 Plasma Chem. Plasma Process. 2017 1
    [35]
    Liu W et al 2016 Plasma Chem. Plasma Process. 2016 1
    [36]
    Raizer Y P and Braun C 1991 Gas Discharge Physics J. Applied Optics 31 2400
  • Related Articles

    [1]Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [4]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [5]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [6]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [7]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [10]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02

Catalog

    Article views (373) PDF downloads (903) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return