Advanced Search+
Dan ZHANG (张丹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures[J]. Plasma Science and Technology, 2019, 21(3): 34009-034009. DOI: 10.1088/2058-6272/aaec9b
Citation: Dan ZHANG (张丹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures[J]. Plasma Science and Technology, 2019, 21(3): 34009-034009. DOI: 10.1088/2058-6272/aaec9b

Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures

Funds: We acknowledge the support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400).
More Information
  • Received Date: July 18, 2018
  • We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures (room temperature to 300°C) in atmosphere. A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample’s initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped. The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.
  • [1]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [2]
    Wang Z et al 2014 Front. Phys. 9 419
    [3]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [4]
    Wang Q Q et al 2012 Front. Phys. 7 701
    [5]
    Vadillo J M and Laserna J J 2004 Spectrochim. Acta B 59 147
    [6]
    Jeong S H, Greif R and Russo R E 1998 Appl. Surf. Sci. 127–129 1029
    [7]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [8]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [9]
    Chen A M et al 2015 Phys. Plasmas 22 033301
    [10]
    Kuzuya M and Mikami O 1990 Jpn. J. Appl. Phys. 29 1568
    [11]
    Rusak D A et al 1997 Crit. Rev. Anal. Chem. 27 257
    [12]
    Hahn D W and Lunden M M 2000 Aerosol Sci. Technol. 33 30
    [13]
    Yin W B et al 2009 Appl. Spectrosc. 63 865
    [14]
    Xin Y et al 2016 Front. Phys. 11 115207
    [15]
    Yu J et al 2012 Front. Phys. 7 649
    [16]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [17]
    Guo L B et al 2016 Front. Phys. 11 115208
    [18]
    Verhoff B et al 2012 J. Appl. Phys. 112 093303
    [19]
    Harilal S S et al 2003 J. Appl. Phys. 93 2380
    [20]
    Singh K S and Sharma A K 2016 Phys. Plasmas 23 122104
    [21]
    Guo J et al 2017 J. Anal. At. Spectrom. 32 367
    [22]
    Li X W et al 2015 Plasma Sci. Technol. 17 621
    [23]
    Kasperczuk A et al 2009 Appl. Phys. Lett. 94 081501
    [24]
    Diao C Y et al 2011 Eur. Phys. J. D 63 123
    [25]
    Chen M et al 2012 Laser Phys. Lett. 9 730
    [26]
    Zhang D et al 2018 Spectrochim. Acta B 143 71
    [27]
    Singh K S and Sharma A K 2016 Phys. Plasmas 23 123514
    [28]
    Eschlb?ck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [29]
    Palanco S et al 1999 J. Anal. At. Spectrom. 14 1883
    [30]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
    [31]
    Liu Y et al 2016 Chin. Opt. Lett. 14 136
    [32]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
    [33]
    Chen A M et al 2015 Opt. Express 23 24648
    [34]
    Shah M L et al 2013 Plasma Sci. Technol. 15 546
    [35]
    Wang J G et al 2015 Plasma Sci. Technol. 17 649
    [36]
    Ahamer C M and Pedarnig J D 2018 Spectrochim. Acta B 148 23
    [37]
    Thorstensen J and Foss S E 2012 J. Appl. Phys. 112 103514
    [38]
    Yahng J S and Jeoung S C 2011 Opt. Lasers Eng. 49 1040
    [39]
    Li X W et al 2013 J. Appl. Phys. 113 243304
    [40]
    Harilal S S et al 2009 Appl. Phys. Lett. 95 221501
    [41]
    Wang Y et al 2017 AIP Adv. 7 095204
    [42]
    Wang Y et al 2018 Phys. Plasmas 25 033302
    [43]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [44]
    Aguilera J A, Aragón C and Pe?alba F 1998 Appl. Surf. Sci. 127–129 309
    [45]
    Harilal S S et al 2015 Opt. Express 23 15608
    [46]
    Zhang S D et al 2014 Spectrochim. Acta B 97 13
    [47]
    Hegazy H et al 2014 Eur. Phys. J. D 68 107
    [48]
    Yang D P et al 2017 Acta Phys. Sin. 66 115201 (in Chinese)
    [49]
    Anoop K K et al 2016 J. Appl. Phys. 120 185901
  • Related Articles

    [1]Hongbo FU, Huadong WANG, Mengyang ZHANG, Bian WU, Zhirong ZHANG. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma[J]. Plasma Science and Technology, 2022, 24(8): 084005. DOI: 10.1088/2058-6272/ac6b8e
    [2]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d
    [3]Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c
    [4]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [5]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [6]Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc
    [7]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [8]Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
    [9]GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
    [10]W A FAROOQ, M ATIF, W TAWFIK, M S ALSALHI, Z A ALAHMED, M SARFRAZ, J P SINGH. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1141-1146. DOI: 10.1088/1009-0630/16/12/10
  • Cited by

    Periodical cited type(20)

    1. Li, A., Chuai, X., Liu, Y. et al. Confocal controlled laser-induced breakdown spectroscopy for quantitative detection of cadmium in soil. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106931
    2. Yang, X., Wang, X., Li, D. et al. Effect of liquid aerosol temperature on the detection performance of LIBS for analysis of phosphorus element in water. Journal of Analytical Atomic Spectrometry, 2024, 39(2): 433-438. DOI:10.1039/d3ja00286a
    3. Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4
    4. Wang, Y., Gao, H., Hong, Y. et al. Influence of distance from lens to sample surface on spectral sensitivity of femtosecond laser-induced breakdown spectroscopy with NaCl water film. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.964140
    5. Chen, L., Deng, H., Wu, Z. et al. Role of Focusing Distance in Picosecond Laser-Induced Cu Plasma Spectra. Advances in High Energy Physics, 2022. DOI:10.1155/2022/4885924
    6. Wang, Q., Ge, T., Liu, Y. et al. Effect of the lens-To-Target distance on the determination of Cr in water by the electro-deposition method and laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2675-2683. DOI:10.1039/d1ja00275a
    7. Wang, Q., Chen, A., Liu, Y. et al. Comparison of emission signals for femtosecond and nanosecond laser-ablated Cu plasmas by changing the distance from focusing-lens to target-surface at different target temperatures. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106302
    8. Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b
    9. Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997
    10. Wang, Q., Chen, A., Liu, M. et al. Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(4): 045504. DOI:10.1088/2058-6272/abeb5d
    11. Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c
    12. Wang, Y., Wang, Q., Chen, A. et al. Influence of sample temperature on nanosecond laser-induced Cu plasma spectra. Optik, 2021. DOI:10.1016/j.ijleo.2021.166338
    13. Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137
    14. Wang, J., Li, X., Li, H. et al. Lens-to-sample distance effect on the quantitative analysis of steel by laser-induced breakdown spectroscopy. Journal of Physics D: Applied Physics, 2020, 53(25): 255203. DOI:10.1088/1361-6463/ab7f74
    15. Shao, J., Guo, J., Wang, Q. et al. Spatial confinement effect on CN emission from nanosecond laser-induced PMMA plasma in air. Optik, 2020. DOI:10.1016/j.ijleo.2020.164448
    16. Guo, K., Chen, A., Gao, X. Influence of distance between target surface and focal point on CN emission of nanosecond laser-induced PMMA plasma in air. Optik, 2020. DOI:10.1016/j.ijleo.2019.164067
    17. Zhang, D., Chen, A., Wang, Q. et al. Influence of distance between sample surface and focal point on the expansion dynamics of laser-induced silicon plasma under different sample temperatures in air. Optik, 2020. DOI:10.1016/j.ijleo.2019.163511
    18. Xu, W., Chen, A., Wang, Q. et al. Characteristics of laser-induced aluminum plasma plumes after increasing sample temperature and spatial confinement. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2288-2294. DOI:10.1039/c9ja00229d
    19. Guo, K., Chen, A., Xu, W. et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Advances, 2019, 9(6): 065214. DOI:10.1063/1.5097301
    20. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (156) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return