Advanced Search+
Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
Citation: Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4

On theoretical research for nonlinear tearing mode

Funds: This work was supported by National Natural Science Foundation of China, the National Magnetic Confinement Fusion Science Program of China under Grant Nos. 11675257 and 2014GB106004, and the CAS Strategic Priority Research Program, the CAS Key Research Program of Frontier Sci- ence, the CAS External Cooperation Program of CAS under Grant Nos. XDB16010300, QYZDJ-SSW-SYS016 and 112111KYSB20160039.
More Information
  • Received Date: January 23, 2018
  • The analytical approaches for nonlinear tearing mode have been reviewed. It is shown that Rutherford’s model has triggered numerous studies on the nonlinear tearing mode. Its physical picture is clear meanwhile its mathematical method is ingenious but still puzzling to understand. It is trying to find how the ‘nonlinear behavior’ resulted from the linear equation by a nonlinear transform. It is indicated that Li’s model for the tearing mode includes the linear growth, Rutherford’s behavior and the new behavior. It was found that the quasilinear modification of magnetic field provided a new damping mechanism for nonlinear growth. The new behavior w ~ t1/2 becomes dominant if the mode is weakly unstable. It is shown that many analytical methods have been developed to calculate the criterion parameter D¢ of the tearing mode. Li’s instability criterion can cover the previous results in the limit cases.
  • [1]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
    [2]
    Rutherford P H 1973 Phys. Fluids 16 1903
    [3]
    White R B et al 1977 Phys. Fluids 20 800
    [4]
    White R B 1986 Rev. Mod. Phys. 58 183
    [5]
    Drake J F and Lee Y C 1977 Phys. Rev. Lett. 39 453
    [6]
    Monticello D A and White R B 1980 Phys. Fluids 23 366
    [7]
    Scott B D, Hassam A B and Drake J F 1985 Phys. Fluids 28 275
    [8]
    Qu W X and Callen J D 1985 Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak Madison USA DOE/ER/53104-T6; No. UWPR-85-5
    [9]
    Carrera R, Hazeltine R D and Kotschenreuther M 1986 Phys. Fluids 29 899
    [10]
    Hegna C C and Callen J D 1992 Phys. Fluids B 4 1855
    [11]
    Smolyakov A I et al 1995 Phys. Plasmas 2 1581
    [12]
    Li D 1998 A destabilization mechanism of neoclassical tearing instability in tokamaks Proc. of the IAEA TCM on Research using Small Fusion Devices (Kanagawa, Oct. 26–28, 1998) pp 81–7
    [13]
    Li D 1995 Phys. Plasmas 2 3275
    [14]
    Wesson J A 1978 Nucl. Fusion 18 87
    [15]
    Strauss H R 1981 Phys. Fluids 24 2004
    [16]
    Hegna C C and Callen J D 1994 Phys. Plasmas 1 2308
    [17]
    Li D 1998 Phys. Plasmas 5 1231
    [18]
    Ivanov N V 1983 Sov. J. Plasma Phys. 9 407
    [19]
    Rutherford P H 1987 From Particles to Plasmas ed J W V Dam (New York: Addison-Wesley) pp 249–71
    [20]
    White R B 1983 Handbook of Plasma Physics ed A A Galeev and R N Sudan (Amsterdam: North-Holland) vol 1, pp 611–76
    [21]
    Cai H S et al 2011 Phys. Rev. Lett. 106 075002
  • Cited by

    Periodical cited type(14)

    1. Tan, Q., Ye, H., Gong, X. et al. Effects of N/Ne impurity seeding on the divertor asymmetry in HL-2A tokamak. Nuclear Fusion, 2025, 65(2): 026032. DOI:10.1088/1741-4326/ada2aa
    2. Khabanov, F.O., Hong, R., Diamond, P.H. et al. Density fluctuation statistics and turbulence spreading at the edge of L-mode plasmas. Nuclear Fusion, 2024, 64(12): 126056. DOI:10.1088/1741-4326/ad820d
    3. Li, Z., Chen, X., Diamond, P.H. et al. How turbulence spreading improves power handling in quiescent high confinement fusion plasmas. Communications Physics, 2024, 7(1): 96. DOI:10.1038/s42005-024-01590-0
    4. Ji, X., Guo, Z., Zhang, Y. Multi-field coupling in the scrape-off layer of tokamak plasma. Nuclear Fusion, 2024, 64(10): 106032. DOI:10.1088/1741-4326/ad70ca
    5. Long, T., Diamond, P.H., Ke, R. et al. On how structures convey non-diffusive turbulence spreading. Nuclear Fusion, 2024, 64(6): 064002. DOI:10.1088/1741-4326/ad40c0
    6. Li, N., Xu, X., Diamond, P. et al. How fluctuation intensity flux drives SOL expansion. Nuclear Fusion, 2023, 63(12): 124005. DOI:10.1088/1741-4326/ad0599
    7. Wu, T., Diamond, P.H., Nie, L. et al. How turbulent transport broadens the heat flux width: local SOL production or edge turbulence spreading?. Nuclear Fusion, 2023, 63(12): 126001. DOI:10.1088/1741-4326/acf5d9
    8. Wang, Z., Qiu, Z., Wang, L. et al. Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation (CMCFTS). Plasma Science and Technology, 2023, 25(8): 081001. DOI:10.1088/2058-6272/acc14d
    9. Wu, M.J., Yang, X.Y., Xu, T.C. et al. Calibration and test of CsI scintillator ion detection system for tokamak magnetic field diagnosis based on laser-driven ion-beam trace probe (LITP). Nuclear Fusion, 2022, 62(10): 106028. DOI:10.1088/1741-4326/ac8ca0
    10. Yan, L., Gao, J., Miao, X. et al. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak. Chinese Physics Letters, 2022, 39(11): 115202. DOI:10.1088/0256-307X/39/11/115202
    11. Chu, X., Diamond, P.H., Guo, Z. SOL width broadening by spreading of pedestal turbulence. Nuclear Fusion, 2022, 62(6): 066021. DOI:10.1088/1741-4326/ac4f9f
    12. Huang, Z., Cheng, J., Wu, N. et al. Upgrade of an integrated Langmuir probe system on the closed divertor target plates in the HL-2A tokamak. Plasma Science and Technology, 2022, 24(5): 054002. DOI:10.1088/2058-6272/ac496c
    13. Chen, W., Ma, Z., Zhang, H. et al. Free-boundary plasma equilibria with toroidal plasma flows. Plasma Science and Technology, 2022, 24(3): 035101. DOI:10.1088/2058-6272/ac48de
    14. Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19

    Other cited types(0)

Catalog

    Article views (228) PDF downloads (395) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return