Advanced Search+
Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
Citation: Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4

On theoretical research for nonlinear tearing mode

Funds: This work was supported by National Natural Science Foundation of China, the National Magnetic Confinement Fusion Science Program of China under Grant Nos. 11675257 and 2014GB106004, and the CAS Strategic Priority Research Program, the CAS Key Research Program of Frontier Sci- ence, the CAS External Cooperation Program of CAS under Grant Nos. XDB16010300, QYZDJ-SSW-SYS016 and 112111KYSB20160039.
More Information
  • Received Date: January 23, 2018
  • The analytical approaches for nonlinear tearing mode have been reviewed. It is shown that Rutherford’s model has triggered numerous studies on the nonlinear tearing mode. Its physical picture is clear meanwhile its mathematical method is ingenious but still puzzling to understand. It is trying to find how the ‘nonlinear behavior’ resulted from the linear equation by a nonlinear transform. It is indicated that Li’s model for the tearing mode includes the linear growth, Rutherford’s behavior and the new behavior. It was found that the quasilinear modification of magnetic field provided a new damping mechanism for nonlinear growth. The new behavior w ~ t1/2 becomes dominant if the mode is weakly unstable. It is shown that many analytical methods have been developed to calculate the criterion parameter D¢ of the tearing mode. Li’s instability criterion can cover the previous results in the limit cases.
  • [1]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
    [2]
    Rutherford P H 1973 Phys. Fluids 16 1903
    [3]
    White R B et al 1977 Phys. Fluids 20 800
    [4]
    White R B 1986 Rev. Mod. Phys. 58 183
    [5]
    Drake J F and Lee Y C 1977 Phys. Rev. Lett. 39 453
    [6]
    Monticello D A and White R B 1980 Phys. Fluids 23 366
    [7]
    Scott B D, Hassam A B and Drake J F 1985 Phys. Fluids 28 275
    [8]
    Qu W X and Callen J D 1985 Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak Madison USA DOE/ER/53104-T6; No. UWPR-85-5
    [9]
    Carrera R, Hazeltine R D and Kotschenreuther M 1986 Phys. Fluids 29 899
    [10]
    Hegna C C and Callen J D 1992 Phys. Fluids B 4 1855
    [11]
    Smolyakov A I et al 1995 Phys. Plasmas 2 1581
    [12]
    Li D 1998 A destabilization mechanism of neoclassical tearing instability in tokamaks Proc. of the IAEA TCM on Research using Small Fusion Devices (Kanagawa, Oct. 26–28, 1998) pp 81–7
    [13]
    Li D 1995 Phys. Plasmas 2 3275
    [14]
    Wesson J A 1978 Nucl. Fusion 18 87
    [15]
    Strauss H R 1981 Phys. Fluids 24 2004
    [16]
    Hegna C C and Callen J D 1994 Phys. Plasmas 1 2308
    [17]
    Li D 1998 Phys. Plasmas 5 1231
    [18]
    Ivanov N V 1983 Sov. J. Plasma Phys. 9 407
    [19]
    Rutherford P H 1987 From Particles to Plasmas ed J W V Dam (New York: Addison-Wesley) pp 249–71
    [20]
    White R B 1983 Handbook of Plasma Physics ed A A Galeev and R N Sudan (Amsterdam: North-Holland) vol 1, pp 611–76
    [21]
    Cai H S et al 2011 Phys. Rev. Lett. 106 075002
  • Related Articles

    [1]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [2]Shuai JIANG, Weikang TANG, Lai WEI, Tong LIU, Haiwen XU, Zhengxiong WANG. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055101. DOI: 10.1088/2058-6272/ac500b
    [3]Aohua MAO (毛傲华), Zhibin WANG (王志斌), Xianglei HE (何向磊), Xiaogang WANG (王晓钢). Nonlinear evolution and secondary island formation of the double tearing mode in a hybrid simulation[J]. Plasma Science and Technology, 2021, 23(3): 35103-035103. DOI: 10.1088/2058-6272/abe038
    [4]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
    [7]MA Jun (马骏), QIN Hong (秦宏), YU Zhi (于治), LI Dehui (李德徽). Nonlinear Simulations of Coalescence Instability Using a Flux Difference Splitting Method[J]. Plasma Science and Technology, 2016, 18(7): 714-719. DOI: 10.1088/1009-0630/18/7/03
    [8]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [9]YUAN Yuan(袁媛), JIANG Zhonghe(江中和), GUO Weixin(郭伟欣), SUN Xinfeng(孙新锋), HU Xiwei(胡希伟). Mode-Coupling Analysis of Parametric Decay Instability in Magnetized Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 809-814. DOI: 10.1088/1009-0630/16/9/01
    [10]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
  • Cited by

    Periodical cited type(8)

    1. Orgen, S.B., Dela Pena, E.M.B. Microstructure and Corrosion Behavior of PEO-Coated AA7075 Under Pulsed Unipolar Potential Control Mode. Coatings, 2024, 14(12): 1498. DOI:10.3390/coatings14121498
    2. Sun, S., Shang, J. Improved wear and corrosion resistance of MoS2/MgO/MgAl2O4 composite layer in-situ prepared by one-step micro-arc oxidation. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.110151
    3. Hu, Q., Li, X., Ruan, Y. et al. Friction Reduction of Aluminum Alloy Micro-arc Oxidation Coating by Filling Graphene Oxide. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-09666-2
    4. Wang, G., Song, J., Zhao, G. et al. Improving output performance of ultrasonic motor by coating MoS2 on the stator. Tribology International, 2023. DOI:10.1016/j.triboint.2023.108608
    5. Wang, S., Yu, Q., Wang, X. et al. SiO2 passivated TaS2 saturable absorber mirrors for the ultrafast pulse generation. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165742
    6. Zhu, L., Wang, Z., Li, C. et al. Highly stable 1T-MoS2 by magneto-hydrothermal synthesis with Ru modification for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022. DOI:10.1039/d2ta05954a
    7. Tsai, D.-S., Chou, C.-C. Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review. Coatings, 2021, 11(3): 1-21. DOI:10.3390/coatings11030270
    8. Esmaeili, M., Tadayonsaidi, M., Ghorbanian, B. The effect of PEO parameters on the properties of biodegradable Mg alloys: A review. Surface Innovations, 2020, 9(4): 184-198. DOI:10.1680/jsuin.20.00057

    Other cited types(0)

Catalog

    Article views (227) PDF downloads (395) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return