Advanced Search+
Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
Citation: Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6

The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes

More Information
  • Received Date: February 28, 2018
  • This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes. Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 kV. A plasma reactor equipped with two 0.3×0.3 mm2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m−3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used, this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.
  • [1]
    Kogelschatz U 2002 Plasma Chem. Plasma Process. 23 1
    [2]
    Okazaki S et al 1993 J. Phys. D Appl. Phys. 26 889
    [3]
    Gnapowski E 2008 Works Inst. Electr. Electrotechnol. 239 43
    [4]
    Liu W et al 2017 Eur. Lett. 118 45001
    [5]
    Ma Y et al 2015 Nanoscale Res. Lett. 10 308
    [6]
    Luo H Y et al 2017 IEEE Trans. Plasma Sci. 45 749
    [7]
    H?ft H et al 2016 Plasma Sources Sci. Technol. 25 064002
    [8]
    Fang Z et al 2012 IEEE Trans. Plasma Sci. 40 1884
    [9]
    Ye Q Z et al 2012 Plasma Sources Sci. Technol. 21 065008
    [10]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [11]
    Gnapowski E and Gnapowski S 2014 World Acad. Sci. Eng. Technol. Int. J. Electr. 8 410 (http://scholar.waset.org/ 1307-6892/9997987)
    [12]
    Gnapowski E and Gnapowski S 2016 IEEE Trans. Plasma Sci. 44 2079
    [13]
    Benard N and Moreau E 2014 Exp. Fluids 55 1846
    [14]
    Gnapowski E 2017 Polish Patent Office, No. 225505 https:// grab.uprp.pl/sites/WynalazkiWzoryUzytkowe/Opisy/ Patenty%20i%20Wzory%20uytkowe/225505_B1.pdf
    [15]
    Young H D, Freedman R A and Ford A L 2012 University Physics with Modern Physics 13th edn (San Francisco: Addison-Wesley) p 801
  • Related Articles

    [1]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [2]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [3]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [4]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [5]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [6]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [7]LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05
    [8]CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12
    [9]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [10]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08

Catalog

    Article views (161) PDF downloads (424) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return