Advanced Search+
Mooktzeng LIM (林木森), Ahmad Zulazlan Shah ZULKIFLI. Investigation of biomass surface modification using non-thermal plasma treatment[J]. Plasma Science and Technology, 2018, 20(11): 115502. DOI: 10.1088/2058-6272/aac819
Citation: Mooktzeng LIM (林木森), Ahmad Zulazlan Shah ZULKIFLI. Investigation of biomass surface modification using non-thermal plasma treatment[J]. Plasma Science and Technology, 2018, 20(11): 115502. DOI: 10.1088/2058-6272/aac819

Investigation of biomass surface modification using non-thermal plasma treatment

Funds: The authors would like to thank Tenaga Nasional Berhad (Malaysia) for funding this research (TNBR/SF 240/2016).
More Information
  • Received Date: February 21, 2018
  • The effects of non-thermal plasma (NTP) treatment on biomass in the form of pulverized palm- based empty fruit bunches (EFB) are investigated. Specifically, this study investigates the effects of NTP treatment on the surface reactivity, morphology, oxygen-to-carbon (O/C) ratio of the EFB at varying treatment times. The surface reactivity is determined by the reaction of antioxidant functional groups or reactive species with 2,2-diphenyl-1-picrylhydrazyl (DPPH). By measuring the concentration of the DPPH with a spectrophotometer, the change in the amount of antioxidant functional groups can be measured to determine the surface reactivity. The reactions of the various lignin components in the EFB with respect to the NTP treatment are discussed by qualitatively assessing the changes in the Fourier transform infrared (FTIR) spectra. The surface morphology is examined by a scanning electron microscope. To determine the amount of oxygen deposited on the EFB by the air-based NTP treatment, the oxygen and carbon contents are measured by an energy dispersive x-ray detector to determine the O/C ratio. The results show that the NTP reactor produced reactive species such as atomic oxygen and ozone, increasing the surface reactivity and chemical scavenging rate of the EFB. Consequently, the surface morphology changed, with an observed rougher surface from the images of the EFB samples. The change in the appearance of the surface is accompanied by a high O/C ratio, and is caused by reactions of certain components of lignin due to the NTP treatment. The lignin component that was modified is believed to be syringyl, as the syringyl portion in the lignin of EFBs is higher compared to the other components. Syringyl components are detected in the range of FTIR wavenumbers of 1109–1363cm −1 . With increasing NTP treatment times, the absorbance (of the peaks in the FTIR spectra) for syringyl related C−H and lignin associated C=C bonds decreases as the syringyl decomposes. The resulting release of carboxyl compounds increases the absorbance for the carbonyl C=O group. The results show that NTP treatment is able to modify the surface properties of EFB, and that the surface reactivity can be increased to improve their conversion and processing efficiencies
  • [1]
    Coral Medina J D et al 2015 Bioresource Technol. 194 172
    [2]
    Nyakuma B B et al 2014 Energy Proc. 52 466
    [3]
    Wu Y L et al 2013 Surf. Coat. Technol. 234 100
    [4]
    Zhang J et al 2016 Chem. Eng. J. 294 281
    [5]
    Yoshida S et al 2013 Surf. Coat. Technol. 233 99
    [6]
    Hakkou M et al 2006 Polym. Degrad. Stab. 91 393
    [7]
    Esteves B M and Pereira H M 2009 BioResources 4 370
    [8]
    Croitoru C et al 2018 Appl. Surf. Sci. 438 114
    [9]
    Lin B J et al 2018 J. Anal. Appl. Pyrolysis 130 8
    [10]
    Jebrane M, Pichavant F and Sèbe G 2011 Carbohydr. Polym. 83 339
    [11]
    Nagarajappa G B and Pandey K K 2016 J. Photochem. Photobiol. B 155 20
    [12]
    Tu K K et al 2018 Mater. Des. 140 30
    [13]
    Xie L K et al 2015 Surf. Coat. Technol. 281 125
    [14]
    Podgorski L et al 2000 Int. J. Adhes. Adhes. 20 103
    [15]
    Hardy J M et al 2015 Appl. Surf. Sci. 359 137
    [16]
    Acda M N et al 2012 Int. J. Adhes. Adhes. 32 70
    [17]
    Gascón-Garrido P et al 2016 Appl. Surf. Sci. 366 112
    [18]
    Sun R C, Tomkinson J and Bolton J 1999 Polym. Degrad. Stab. 63 195
    [19]
    Nakagawa-Izumi A et al 2017 Ind. Crops Prod. 95 615
    [20]
    Prégent J et al 2015 Cellulose 22 811
    [21]
    Peters F et al 2017 J. Phys. D Appl. Phys. 50 475206
    [22]
    Lim M et al 2017 Int. J. Env. Sci. and Dev. 8 50
    [23]
    Jamali A and Evans P D 2011 Wood Sci. Technol. 45 169
    [24]
    Klarh?fer L, Vi?l W and Maus-Friedrichs W 2010 Holzforschung 64 331
    [25]
    Koljonen K et al 2004 Cellulose 11 209
    [26]
    Demirbas A 2017 Energy Sources A 39 592
    [27]
    Gilli E et al 2012 Cellulose 19 249
    [28]
    Papp G et al 2005 J. Photochem. Photobiol. A 173 137
    [29]
    Tamburini D et al 2017 Polym. Degrad. Stab. 146 140
  • Related Articles

    [1]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]Chen YUAN (袁晨), Jun WU (吴军), Zejie YIN (阴泽杰). A digital wide range neutron flux measuring system for HL-2A[J]. Plasma Science and Technology, 2017, 19(8): 84004-084004. DOI: 10.1088/2058-6272/aa6bf1
    [4]XIA Donghui(夏冬辉), ZHOU Jun(周俊), RAO Jun(饶军), HUANG Mei(黄梅), LU Zhihong(陆志鸿), WANG He(王贺), CHEN Gangyu(陈罡宇), WANG Chao(王超), LU Bo(卢波), ZHUANG Ge(庄革). Design of the Transmission Lines for 140 GHz ECRH System on HL-2A[J]. Plasma Science and Technology, 2014, 16(3): 267-272. DOI: 10.1088/1009-0630/16/3/17
    [5]HUANG Mei (黄梅), CHEN Gangyu (陈罡宇), ZHOU Jun (周俊), WANG Chao (王超), et al.. Development of a 140 GHz Steerable Launcher for the HL-2A ECRH System[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/16
    [6]WANG Jun (王军), HU Chundong (胡纯栋), HU Shuanghui (胡双辉), WU Bin (吴斌), et al.. Alfvén Instabilities Excited by Energetic Particles in a Parameter Regime Similar to EAST Operation[J]. Plasma Science and Technology, 2013, 15(8): 750-754. DOI: 10.1088/1009-0630/15/8/06
    [7]WANG Chao (王超), ZHOU Jun (周俊), HUANG Mei (黄梅), WANG He (王贺), CHEN Gangyu (陈罡宇), RAO Jun (饶军). ECRH Launcher for Four-Beam Injection on HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(5): 476-479. DOI: 10.1088/1009-0630/15/5/16
    [8]XIA Zhiwei (夏志伟), LI Wei (李伟), YANG Qingwei (杨青巍), LU Jie (卢杰), YI Ping (易萍), GAO Jinming (高金明). Application of DEGAS for Ion Temperature Profile Reconstruction from a NPA Diagnostic on HL-2A[J]. Plasma Science and Technology, 2013, 15(2): 101-105. DOI: 10.1088/1009-0630/15/2/04
    [9]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
    [10]YAO Lianghua (姚良骅), ZHAO Dawei (赵大为), FENG Beibin (冯北滨), CHEN.Chengyuan (陈程远), ZHOU Yan(周艳), HAN Xiaoyu (韩晓玉), LI Yonggao (李永高), Jerome BUCALOSSI, Duan Xuru (段旭如). Comparison of Supersonic Molecular Beam Injection from both low field side and high field side of HL-2A[J]. Plasma Science and Technology, 2010, 12(5): 529-534.

Catalog

    Article views (188) PDF downloads (362) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return