Advanced Search+
Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
Citation: Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881

Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance

Funds: This work is supported by National Key R&D Program of China (2016YFC0207200), and National Natural Science Foundation of China (Nos. 51377014, 51407022 and 51677019).
More Information
  • Received Date: January 01, 2018
  • In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d=0 mm) and volume added surface barrier discharges (d=2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3u →B3Πg ) and N2+ (B 2 Σu+ → X 2Σg+ ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d=0 mm structure can excite the largest emission intensity of N 2 (C 3 Πu →B3Πg ), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2+ (B2 Σu+ → X2 Σg+ )/N 2(C3Πu →B3Πg ) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d=3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2(C3 Π u →B 3Πg ) than that of d=2 mm structure. The structure of d=2 mm can maintain more increasing factor than that of the d=3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.
  • [1]
    Taglioli M et al 2016 Plasma Sources Sci. Technol. 25 06LT01
    [2]
    Bayoda K D, Benard N and Moreau E 2015 J. Electrost. 74 79
    [3]
    Babaeva N Y, Tereshonok D V and Naidis G V 2016 Plasma Sources Sci. Technol. 25 044008
    [4]
    Goekce S et al 2016 Plasma Sources Sci. Technol. 25 045002
    [5]
    Nudnova M M et al 2015 Phil. Trans. R. Soc. A 373 20140330
    [6]
    He K et al 2015 Plasma Sources Sci. Technol. 24 025034
    [7]
    Jiang N et al 2017 J. Phys. D: Appl. Phys 50 155206
    [8]
    Abdelaziz A A et al 2016 Plasma Sources Sci. Technol. 25 035012
    [9]
    Malik M A et al 2015 Plasma Chem. Plasma Process. 35 697
    [10]
    Malik M A et al 2011 J. Hazad. Mater. 197 220
    [11]
    Masuda S et al 1988 IEEE Trans. Ind. Appl. 24 223
    [12]
    Radzig A A and Smirnov B M 1985 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer Press)
    [13]
    Benard N, Mizuno A and Moreau E 2009 J. Phys. D: Appl. Phys 42 235204
    [14]
    Kogelschatz U 2003 Plasma Chem. Plasma Process 23 1
    [15]
    Pechereau F, Bonaventura Z and Bourdon A 2016 Plasma Sources Sci. Technol. 25 044004
    [16]
    Hoder T et al 2016 Plasma Sources Sci. Technol. 25 025017
    [17]
    Pai D Z, Lacoste D A and Laux C O 2010 J. Appl. Phys. 107 093303
    [18]
    Gu J W et al 2016 Plasma Sci. Technol. 18 230
    [19]
    Zhao Z L et al 2017 Plasma Sci. Technol. 19 064007
    [20]
    Zhao Z L et al 2016 Spectrochim. Acta A 161 186
    [21]
    Yang D Z et al 2012 Plasma Sources Sci. Technol. 21 035004
    [22]
    Xia Y et al 2016 J. Phys. D: Appl. Phys 49 165202
    [23]
    Xia Y et al 2016 Phys. Plasmas 23 013509
    [24]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [25]
    Montello A et al 2013 J. Phys. D: Appl. Phys 46 464002
    [26]
    Lo A et al 2014 J. Phys. D: Appl. Phys 47 115201
  • Related Articles

    [1]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [2]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [3]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Electrical characters and optical emission spectra of VBD coupled SBD excited by sine AC voltage in atmospheric air[J]. Plasma Science and Technology, 2017, 19(6): 64007-064007. DOI: 10.1088/2058-6272/aa6679
    [4]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [5]HU Jian (胡健), JIANG Nan (姜楠), LI Jie (李杰), SHANG Kefeng (商克峰), LU Na (鲁娜), WU Yan (吴彦), MIZUNO Akira (水野障). Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power[J]. Plasma Science and Technology, 2016, 18(3): 254-258. DOI: 10.1088/1009-0630/18/3/07
    [6]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [7]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [8]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10
    [9]SHAO Tao, ZHANG Cheng, NIU Zheng, YU Yang, YU Yang, ZHOU Yuanxiang. Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure[J]. Plasma Science and Technology, 2011, 13(5): 591-592.
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (158) PDF downloads (339) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return