Advanced Search+
Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
Citation: Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6

Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon

Funds: This work was supported by National Natural Science Foundation of China (No. 51608468), High School Science and Technology Research Project of Hebei Province (No. QN2018258), China Postdoctoral Science Foundation (Nos. 2015M580216 and 2016M601285), and Hebei Province Preferred Postdoctoral Science Foundation (No. B2016003019).
More Information
  • Received Date: August 19, 2018
  • A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon (Fe-Mn GAC) under a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of oxytetracycline (OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD + Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD + virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.
  • [1]
    Karaolia P et al 2018 Appl. Catal. B 224 810
    [2]
    Ren X Y et al 2017 Chemosphere 173 563
    [3]
    Liu Y Q et al 2016 Chem. Eng. J. 284 1317
    [4]
    Zhou J X et al 2018 Colloids Surf. A 545 60
    [5]
    Li N et al 2018 Electrochim. Acta 270 330
    [6]
    Locke B R and Thagard S M 2012 Plasma Chem. Plasma Process. 32 875
    [7]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [8]
    Wang T C et al 2018 Environ. Sci. Technol. 52 7884
    [9]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [10]
    Xu D et al 2017 Plasma Sci. Technol. 19 064004
    [11]
    Krupe? J et al 2018 J. Phys. D Appl. Phys. 51 174003
    [12]
    Nayak G et al 2018 Plasma Process. Polym. 15 1700119
    [13]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [14]
    Zhao H et al 2018 Plasma Sci. Technol. 20 035503
    [15]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [16]
    Sun Q N et al 2018 Environ. Sci. Nano 5 2440
    [17]
    Wang K et al 2018 Front. Chem. Sci. Eng. 12 376
    [18]
    Chen C M et al 2014 Fuel Process. Technol. 124 165
    [19]
    Chen C M et al 2014 J. Ind. Eng. Chem. 20 2782
    [20]
    Wang K et al 2017 Int. J. Electrochem. Sci. 12 8306
    [21]
    Menya E et al 2018 Chem. Eng. Res. Des. 129 271
    [22]
    Wolski L and Ziolek M 2018 App. Catal. B 224 634
    [23]
    Ayoub G and Ghauch A 2014 Chem. Eng. J. 256 280
    [24]
    Tang S F et al 2016 Environ. Sci. Pollut. Res. 23 18800
    [25]
    Vega E and Valdés H 2018 Micropor. Mesopor. Mater. 259 1
    [26]
    Luo X N et al 2017 Nanoscale Res. Lett. 12 99
    [27]
    Cao Y et al 2018 Plasma Sci. Technol. 20 054018
    [28]
    He X X et al 2017 J. Hazard. Mater. 326 101
    [29]
    Wang T C et al 2016 Water Res. 89 28
    [30]
    Duan L J et al 2018 Plasma Sci. Technol. 20 054009
    [31]
    Du X D et al 2017 Chem. Eng. J. 313 1023
    [32]
    Wang T C et al 2017 Environ. Sci. Pollut. Res. 24 21591
    [33]
    Gu J M et al 2018 Nanoscale 10 17722
    [34]
    Hu X Y et al 2016 Appl. Surf. Sci. 362 329
    [35]
    Chen Q H, Wu S N and Xin Y J 2016 Chem. Eng. J. 302 377
  • Related Articles

    [1]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [2]LI Hongtao (李洪涛), KAN Jinfeng (阚金峰), JIANG Bailing (蒋百灵), LIU Yanjie (刘燕婕), LIU Zheng (刘政). Study of the Deburring Process for Low Carbon Steel by Plasma Electrolytic Oxidation[J]. Plasma Science and Technology, 2016, 18(8): 860-864. DOI: 10.1088/1009-0630/18/8/12
    [3]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [4]SONG Ye (宋晔), WANG Qi (王奇), MENG Yuedong (孟月东). Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles[J]. Plasma Science and Technology, 2016, 18(4): 438-441. DOI: 10.1088/1009-0630/18/4/18
    [5]WANG Huijuan (王慧娟), GUO He (郭贺), LIU Yongjie (刘永杰), YI Chengwu (依成武). Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas[J]. Plasma Science and Technology, 2015, 17(10): 881-886. DOI: 10.1088/1009-0630/17/10/12
    [6]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [7]FU Tingjun(付廷俊), HUANG Chengdu(黄承都), LV Jing(吕静), LI Zhenhua(李振花). Fischer-Tropsch Performance of an SiO 2 -Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(3): 232-238. DOI: 10.1088/1009-0630/16/3/11
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16
    [10]Katerina ZAHARIEVA, Gheorghi VISSOKOV, Janis GRABIS, Slavcho RAKOVSKY. Plasma-Chemical Synthesis of Nanosized Powders – Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes[J]. Plasma Science and Technology, 2012, 14(11): 980-995. DOI: 10.1088/1009-0630/14/11/06
  • Cited by

    Periodical cited type(33)

    1. Zhang, T., Kyere-Yeboah, K., Ge, Y. et al. Effects of sodium persulfate and percarbonate on the degradation of 2, 4- dichlorophenol in a dielectric barrier discharge reactor. Chemical Engineering and Processing - Process Intensification, 2024. DOI:10.1016/j.cep.2024.109953
    2. Lavanya, A.. Treatment and nutrient recovery from landfill leachate by sequential persulfate oxidation and struvite precipitation: An evaluation of technical feasibility. Environmental Science and Pollution Research, 2024. DOI:10.1007/s11356-024-34825-2
    3. Ayadi, A., Jellouli Ennigrou, D., Proietto, F. et al. Electrochemical Degradation of Phenol in Aqueous Solutions Using Activated Carbon-ZnO Composite. Environmental Engineering Science, 2023, 40(9): 349-361. DOI:10.1089/ees.2023.0016
    4. Lou, J., An, J., Wang, X. et al. Enhanced degradation of oxytetracycline in aqueous solution by DBD plasma-coupled vacuum ultraviolet/ultraviolet (VUV/UVC) system. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139021
    5. Fan, Y., Wang, L., Sun, X. et al. The efficient removal towards tetracycline via photocatalytic persulfate activation using the heterostructured UiO-66-NH2-CA-Cu/g-C3N4 composite. Journal of Materials Science: Materials in Electronics, 2023, 34(24): 1739. DOI:10.1007/s10854-023-11142-x
    6. Yang, Y., Shen, H., Xu, L. Three-dimensional graphene anchored nZVI hybrid MnO2 as a dissolved oxygen activated Fenton-like catalyst for efficient mineralization of oxytetracycline. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.142781
    7. Kyere-Yeboah, K., Bique, I.K., Qiao, X.-C. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.138061
    8. Li, N., Jiang, H., Liu, J. et al. Adsorption Properties of Pb2+ by Ferric Hydroxide Loaded White Rot Fungi. Journal of Physics: Conference Series, 2023, 2597(1): 012015. DOI:10.1088/1742-6596/2597/1/012015
    9. Attri, P., Koga, K., Okumura, T. et al. Treatment of organic wastewater by a combination of non-thermal plasma and catalyst: a review. Reviews of Modern Plasma Physics, 2022, 6(1): 17. DOI:10.1007/s41614-022-00077-1
    10. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    11. Wang, Q., Huang, T., Du, J. et al. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS Omega, 2022, 7(28): 24574-24586. DOI:10.1021/acsomega.2c02392
    12. He, Y., Sang, W., Lu, W. et al. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water (Switzerland), 2022, 14(9): 1351. DOI:10.3390/w14091351
    13. Yao, X., Guo, J.-S., Zhang, Y.-T. Unveiling pathways of oxytetracycline degradation induced by cold atmospheric plasma. AIP Advances, 2022, 12(3): 035046. DOI:10.1063/5.0085605
    14. Parvulescu, V.I., Epron, F., Garcia, H. et al. Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122(3): 2981-3121. DOI:10.1021/acs.chemrev.1c00527
    15. Magureanu, M., Bilea, F., Bradu, C. et al. A review on non-thermal plasma treatment of water contaminated with antibiotics. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125481
    16. Sang, W., Mei, L., Zhan, C. et al. Removal of N, N-dimethylformamide by dielectric barrier discharge plasma combine with manganese activated carbon. Environmental Science and Pollution Research, 2021, 28(31): 41698-41711. DOI:10.1007/s11356-021-13729-5
    17. Fan, J., Wu, H., Liu, R. et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environmental Science and Pollution Research, 2021, 28(3): 2522-2548. DOI:10.1007/s11356-020-11222-z
    18. Huang, H., Guo, G., Tang, S. et al. Persulfate oxidation for alternative sludge treatment and nutrient recovery: An assessment of technical and economic feasibility. Journal of Environmental Management, 2020. DOI:10.1016/j.jenvman.2020.111007
    19. Tran, M.L., Nguyen, C.H., Tran, T.T.V. et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis. Journal of the Taiwan Institute of Chemical Engineers, 2020. DOI:10.1016/j.jtice.2020.05.001
    20. Sun, W., Sun, Y., Zhu, H. et al. Catalytic activity and evaluation of Fe-Mn@Bt for ozonizing coal chemical biochemical tail water. Separation and Purification Technology, 2020. DOI:10.1016/j.seppur.2020.116524
    21. Tang, S., Tang, J., Yuan, D. et al. Elimination of humic acid in water: Comparison of UV/PDS and UV/PMS. RSC Advances, 2020, 10(30): 17627-17634. DOI:10.1039/d0ra01787f
    22. Tang, S., Wang, Z., Yuan, D. et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. International Journal of Electrochemical Science, 2020, 15(3): 2470-2480. DOI:10.20964/2020.03.09
    23. Chen, L., Sun, Y. Catalytic ozone oxidation treatment of wastewater from a pesticide enterprise. Desalination and Water Treatment, 2020. DOI:10.5004/dwt.2020.26482
    24. Li, J., Li, R., Zou, L. et al. Efficient degradation of norfloxacin and simultaneous electricity generation in a persulfate-photocatalytic fuel cell system. Catalysts, 2019, 9(10): 835. DOI:10.3390/catal9100835
    25. Li, B., Udugama, I.A., Mansouri, S.S. et al. An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 2019. DOI:10.1016/j.jclepro.2019.05.042
    26. Yao, X., Jiang, N., Peng, B. et al. DC discharge with high secondary electron emission oxide cathode: Effects of gas pressure and oxide cathode structure. Vacuum, 2019. DOI:10.1016/j.vacuum.2019.04.035
    27. Jiang, N., Qiu, C., Guo, L. et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2019.02.087
    28. Liu, J., Wang, H., Wang, L. et al. Defect-engineered cobalt-based solid catalyst for high efficiency oxidation of sulfite. Chemical Engineering Science, 2019. DOI:10.1016/j.ces.2018.12.011
    29. Chen, H., Zhang, S., Zhao, Z. et al. Application of Dopamine Functional Materials in Water Pollution Control | [多巴胺功能材料在水污染控制中的应用]. Progress in Chemistry, 2019, 31(4): 571-579. DOI:10.7536/PC180823
    30. Tang, S., Yuan, D., Rao, Y. et al. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2018.12.056
    31. Huang, H., Zhang, D., Wang, W. et al. Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the Total Environment, 2019. DOI:10.1016/j.scitotenv.2018.11.259
    32. Li, N., Tang, S., Rao, Y. et al. Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019. DOI:10.1016/j.electacta.2018.12.063
    33. Huang, H., Li, B., Li, J. et al. Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environmental Pollution, 2019. DOI:10.1016/j.envpol.2018.11.046

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (512) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return