Advanced Search+
Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
Citation: Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7

Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge

Funds: The authors gratefully acknowledge the support from National Natural Science Foundation of China under Grant Nos. 61302029, 61571031, 61671044 and 61871018
More Information
  • Received Date: September 26, 2018
  • Alkali metal DC arc discharge has the characteristics of easy ionization, low power consumption, high plasma temperature and ionization degree, etc, which can be applied in aerospace vehicles in various ways. In this paper, we calculate the physical property parameters of lithium vapor, one of the major alkali metals, and analyze the discharge characteristics of lithium plasma with the magnetohydrodynamic (MHD) model. The discharge effects between constant current and voltage sources are also compared. It is shown that the lithium plasma of DC arc discharge has relatively high temperature and current density. The peak temperature can reach tens of thousands of K, and the current density reaches 6×10 7 A −2 . Under the same rated power, the plasma parameters of the constant voltage source discharge are much higher than those of the constant current source discharge, which can be used as the preferred discharge mode for aerospace applications.
  • [1]
    Luan L J et al 2016 Hot Work. Technol. 45 187 (in Chinese)
    [2]
    Yan P et al 2015 Vacuum 52 38 (in Chinese)
    [3]
    Tan J and Du J 2012 China Surf. Eng. 25 6 (in Chinese)
    [4]
    Wu X M et al 2017 Vacuum Cryog. 23 331 (in Chinese)
    [5]
    Chen Z S et al 2015 Vacuum 52 53 (in Chinese)
    [6]
    Zou X B et al 2004 Industrial Heating 33 16 (in Chinese)
    [7]
    Guo H et al 2018 Acta Phys. Sin. 67 045201 (in Chinese)
    [8]
    Guo H et al 2018 Acta Phys. Sin. 67 055201 (in Chinese)
    [9]
    Ma X C et al 2017 Nucl. Fusion Plasma Phys. 37 267 (in Chinese)
    [10]
    Liu X M et al 2015 Chin. J. Vacuum Sci. Technol. 35 1374 (in Chinese)
    [11]
    Rankovic D et al 2015 Plasma Chem. Plasma Process. 35 1071
    [12]
    Jang J and Nishiyama H 2015 IEEE Trans. Plasma Sci. 43 3688
    [13]
    Miki K et al 2013 Plasma Chem. Plasma Process. 33 959
    [14]
    Wang X G 2014 The Fundamentals of Plasma Physics (Beijing: Peking University Press) (in Chinese)
    [15]
    Li H P and Chen X 2002 Plasma Chem. Plasma Process 22 27
    [16]
    Yan B H et al 2010 Plasma Chem. Plasma Process. 30 257
    [17]
    Lebouvier A et al 2011 IEEE Trans. Plasma Sci. 39 1889
    [18]
    Zheng C K 2012 Plasma Physics (Beijing: Peking University Press) (in Chinese)
    [19]
    Trelles J P 2013 J. Phys. D: Appl. Phys. 46 255201
    [20]
    Li H P 2001 Studies of Heat Transfer and Fluid Flow in a D.C. Arc Plasma Torch and Plasma Jet PhD Thesis Tsinghua University, China (in Chinese)
    [21]
    Wu R H 2018 Study of the Key Technology for Plasma Shealth Applied to Space Vehicles PhD Thesis The Frist Academy of China Aerospace Science and Technology Corporation, Beijing (in Chinese)
    [22]
    Wang W Z et al 2011 J. Phys. D: Appl. Phys. 44 355207
    [23]
    Wang W Z et al 2012 Phys. Plasmas 19 083506
    [24]
    Wang W Z et al 2011 Phys. Plasmas 18 113502
    [25]
    Li H P, Pfender E and Chen X 2003 J. Phys. D: Appl. Phys. 36 1084
  • Related Articles

    [1]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [2]Yaqi YANG (杨亚奇), Weiguo LI (李卫国). Self-organized pattern on the surface of a metal anode in low-pressure DC discharge[J]. Plasma Science and Technology, 2018, 20(3): 35402-035402. DOI: 10.1088/2058-6272/aa997f
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [5]S. Hamideh MORTAZAVI, Mahmood GHORANNEVISS, Soheil PILEHVAR, Sina ESMAEILI, Hamzeh JODAT. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films[J]. Plasma Science and Technology, 2013, 15(4): 362-367. DOI: 10.1088/1009-0630/15/4/10
    [6]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [7]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [8]WANG Zhen (王振), WANG Ninghui (王宁会), LI Tie (李铁), CAO Yong (曹勇). 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO[J]. Plasma Science and Technology, 2012, 14(4): 321-326. DOI: 10.1088/1009-0630/14/4/10
    [9]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
    [10]BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07
  • Cited by

    Periodical cited type(3)

    1. Wu, K., Liu, J., Liu, S. et al. Analysis of anomalous transport with temporal fractional transport equations in a bounded domain. Chinese Physics B, 2023, 32(11): 110502. DOI:10.1088/1674-1056/acedf3
    2. Cimpoiasu, R., Constantinescu, R., Pauna, A.S. Solutions of the bullough–dodd model of scalar field through jacobi-type equations. Symmetry, 2021, 13(8): 1529. DOI:10.3390/sym13081529
    3. Petre, E., Selişteanu, D., Roman, M. Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 2021. DOI:10.1016/j.biortech.2021.124836

    Other cited types(0)

Catalog

    Article views (190) PDF downloads (351) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return