Advanced Search+
Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
Citation: Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e

PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes

Funds: This work was supported by National Natural Science Foundation of China (Grant No. 11602016).
More Information
  • Received Date: November 13, 2018
  • Plasma in the discharge channel of a pulsed plasma thruster (PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail. The computational results of the electron number density, which is in the order of 1023 m−3, show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.
  • [1]
    Burton R L and Turchi P J 1998 J. Propul. Power 14 716
    [2]
    Liu X Y et al 2017 Plasma Sci. Technol. 19 064012
    [3]
    Zhang B et al 2017 Plasma Sci. Technol. 19 064001
    [4]
    Sch?nherr T, Komurasaki K and Herdrich G 2013 J. Propul. Power 29 1478
    [5]
    Zhao X W et al 2017 Plasma Sci. Technol. 19 045402
    [6]
    Zhang Z et al 2018 Plasma Sources Sci. Technol. 20 014006
    [7]
    Cui W S et al 2018 Plasma Sci. Technol. 20 024003
    [8]
    Sch?nherr T, Komurasaki K and Kawashima R 2010 J. IAPS 18 23
    [9]
    Lau M et al 2014 J. Propul. Power 30 1459
    [10]
    Kawahara K et al 2003 Study on plume characteristics of pulsed plasma thruster Proc. 28th Int. Electric Propulsion Conf. IEPC 2003 (Toulouse, France)
    [11]
    Antropov N et al 2003 Development and refinement of highly efficient 150 J APPT Proc. 28th Int. Electric Propulsion Conf. IEPC 2003 (Toulouse, France)
    [12]
    Sch?nherr T et al 2009 J. Propul. Power 25 380
    [13]
    Lau M and Herdrich G 2013 Pulsed plasma thruster endurance operation stress testing at IRS Proc. 33rd Int. Electric Propulsion Conf. IEPC 2013 (Washington, DC)
    [14]
    Sch?nherr T et al 2013 Phys. Plasmas. 20 033503
    [15]
    Jia Y H et al 2018 Plasma Sci. Technol. 20 105502
    [16]
    Zheng H R et al 2018 Plasma Sci. Technol. 20 105501
    [17]
    Neudorfer J et al 2011 Three-dimensional particle-in-cell simulation of a pulsed plasma thruster: modeling and challenges Proc. 32nd Int. Electric Propulsion Conf. IEPC 2011 (Wiesbaden, Germany)
    [18]
    Huang T K et al 2016 Acta Astronaut. 129 309
    [19]
    Antipov A A and Bogatyy A B 2017 Proc. Eng. 185 61
    [20]
    Yang L et al 2016 Phys. Plasmas. 23 073518
    [21]
    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
    [22]
    Boyd I D, Keidar M and McKeon W 2000 J. Spacecr. Rockets 37 399
    [23]
    Gatsonis N A and Yin X M 2001 J. Propul. Power 17 945
    [24]
    Vahedi V and Surendra M 1995 Comput. Phys. Commun. 87 179
    [25]
    Opal C B, Peterson W K and Beaty E C 1971 J. Chem. Phys. 55 4100
    [26]
    Liu Q et al 2018 Aeros. Control Appl. 44 67 (in Chinese)
    [27]
    Szabo J J Jr 2001 Fully kinetic numerical modeling of a plasma thruster PhD Massachusetts Institute of Technology (http:// hdl.handle.net/1721.1/8889)
    [28]
    Eckman R 1998 Pulsed plasma thruster plume diagnostics Proc. 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV, USA) (https://doi.org/10.2514/6.1998-4)
  • Related Articles

    [1]Ao GUO, Huibo TANG, Junyi REN, Guangyue HU, San LU. Ion dynamics in laser-produced collisionless perpendicular shock: one-dimensional particle-in-cell simulation[J]. Plasma Science and Technology, 2023, 25(6): 065301. DOI: 10.1088/2058-6272/acb1fa
    [2]Jinyue GENG (耿金越), Yongcai CHEN (陈永财), Surong SUN (孙素蓉), Wendong HUANG (黄文栋), Haixing WANG (王海兴). Numerical simulation of the plasma acceleration process in a magnetically enhanced micro-cathode vacuum arc thruster[J]. Plasma Science and Technology, 2020, 22(9): 94012-094012. DOI: 10.1088/2058-6272/ab9282
    [3]Hui LIU (刘辉), Xiang NIU (牛翔), Huan WU (伍环), Daren YU (于达仁). Simulation study of the influence of leak electrons on the discharge characteristics of a cusped field thruster[J]. Plasma Science and Technology, 2019, 21(4): 45502-045502. DOI: 10.1088/2058-6272/aaf674
    [4]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [5]V M BARDAKOV, S D IVANOV, A V KAZANTSEV, N A STROKIN, A N STUPIN, Binhao JIANG (江滨浩), Zhenyu WANG (王振宇). Anomalous acceleration of ions in a plasma accelerator with an anodic layer[J]. Plasma Science and Technology, 2018, 20(3): 35501-035501. DOI: 10.1088/2058-6272/aa97cc
    [6]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [7]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [8]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [9]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [10]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
  • Cited by

    Periodical cited type(10)

    1. Taccogna, F., Cichocki, F., Eremin, D. et al. Plasma propulsion modeling with particle-based algorithms. Journal of Applied Physics, 2023, 134(15): 150901. DOI:10.1063/5.0153862
    2. Wu, J.-J., Ou, Y., Zhang, Y. et al. Review and Prospect of Laser-Electric Hybrid Thruster | [激光-电磁复合推力器研究现状与展望]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208069. DOI:10.13675/j.cnki.tjjs.2208069
    3. Zhao, Y., Liu, F., Zhuang, Y. et al. Influence of Nanosecond Pulse Voltage Slew Rates on the Uniformity of Argon DBD | [纳秒脉冲电压变化速率对氩气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(6): 2317-2325. DOI:10.13336/j.1003-6520.hve.20211509
    4. Sun, G., Shen, S., Yan, J. et al. Simulation Investigation on the Formation of Potential Barrier in the Initial Stage of Pseudospark Discharge | [伪火花放电初始阶段电势势垒形成的仿真研究]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(1): 358-365. DOI:10.13336/j.1003-6520.hve.20201839
    5. Liu, P., Liu, W., Zhao, L. et al. Study on the Generation and Modification of Surface Atmospheric Pressure Air Diffuse Discharge Plasma on Aramid Fabric. 2021. DOI:10.1109/CIEEC50170.2021.9510357
    6. Wu, Z., Huang, T., Liu, X. et al. Application and development of the pulsed plasma thruster. Plasma Science and Technology, 2020, 22(9): 094014. DOI:10.1088/2058-6272/aba7ac
    7. Wu, J., Zhang, Y., Ou, Y. et al. Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes. Plasma Science and Technology, 2020, 22(9): 094007. DOI:10.1088/2058-6272/ab9171
    8. Zhou, Y., Wang, N., Liu, X. et al. Experimental investigation on the evolution of plasma properties in the discharge channel of a pulsed plasma thruster. Plasma Science and Technology, 2020, 22(6): 065504. DOI:10.1088/2058-6272/ab7ed9
    9. Zhang, Y., Wu, J., Ou, Y. et al. Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy. Plasma Science and Technology, 2020, 22(4): 045501. DOI:10.1088/2058-6272/ab5a8e
    10. Liu, Q., Yang, L., Huang, Y. et al. Investigation of the self-induced magnetic field characteristics in a pulsed plasma thruster with flared electrodes. Plasma Science and Technology, 2020, 22(3): 034007. DOI:10.1088/2058-6272/ab5a8d

    Other cited types(0)

Catalog

    Article views (238) PDF downloads (507) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return