Advanced Search+
Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
Citation: Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b

Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe

Funds: This study was partly supported by National Natural Science Foundation of China (Nos. 11475131, 11805011).
More Information
  • Received Date: November 18, 2018
  • We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope (OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines (750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode (E-mode). As the discharge mode changes into the inductively coupled mode (H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode (W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon (H) and Trivelpiece-Gould (TG) waves.
  • [1]
    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [2]
    Shinohara S et al 2009 Phys. Plasmas 16 057104
    [3]
    Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004
    [4]
    Takahashi K, Komuro A and Ando A 2015 Plasma Sources Sci. Technol. 24 055004
    [5]
    Xia G Q et al 2015 Spacecraft Environ. Eng. 32 1 (in Chinese)
    [6]
    Wang S J et al 2007 J. Korean Phys. Soc. 51 989
    [7]
    Wang Y et al 2015 Phys. Plasmas 22 093507
    [8]
    Barada K K et al 2013 Phys. Plasmas 20 012123
    [9]
    Sato G, Oohara W and Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734
    [10]
    Chen F F 2003 Phys. Plasmas 10 2586
    [11]
    Siddiqui MU and Hershkowitz N 2014 Phys. Plasmas 21 020707
    [12]
    Zhao G et al 2018 Plasma Sci. Technol. 20 075402
    [13]
    Braginskii O V, Vasil’eva A N and Kovalev A S 2001 Plasma Phys. Rep. 27 699
    [14]
    Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [15]
    Zhu X M et al 2006 Phys. Plasmas 13 123501
    [16]
    Zhao G et al 2017 Phys. Plasmas 24 123507
    [17]
    Shinohara S et al 2019 Plasma Phys. Controlied Fusion 61 014017
    [18]
    Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
    [19]
    Liu L et al 2009 Plasma Sci. Technol. 11 307
    [20]
    Czerwiec T and Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827
    [21]
    Clarenbach B et al 2007 J. Phys. D: Appl. Phys. 40 5117
    [22]
    Degeling A W et al 1996 Phys. Plasmas 3 2788
    [23]
    Ellingboe A R et al 1996 Phys. Plasmas 3 2797
    [24]
    Isayama S et al 2016 Phys. Plasmas 23 063513
    [25]
    Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
    [26]
    Djermanova N et al 2004 Vacuum 76 389
    [27]
    Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19 105403
    [28]
    Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
    [29]
    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
    [30]
    Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14 113503
    [31]
    Wang Y 2017 Plasma Sci. Technol. 19 024003
    [32]
    Celik M 2011 Spectrochim. Acta Part B At. Spectrosc. 66 149
    [33]
    Chen F F 1992 J. Vac. Sci. Technol. A 10 1389
    [34]
    Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
    [35]
    Arnush D 2000 Phys. Plasmas 7 3042
    [36]
    Ganguli A, Sahu B B and Tarey R D 2011 Plasma Sources Sci. Technol. 20 015021
  • Related Articles

    [1]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [2]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [3]Safi ULLAH, Hailong LI (李海龙), Abdur RAUF, Lin MENG (蒙林), Bin WANG (王彬), Maoyan WANG (王茂琰). PMSE dependence on frequency observed simultaneously with VHF and UHF radars in the presence of precipitation[J]. Plasma Science and Technology, 2018, 20(11): 115302. DOI: 10.1088/2058-6272/aac8d4
    [4]Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a
    [5]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [6]DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12
    [7]GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13
    [8]QI Lei(齐磊), ZHANG Chunmei(张春梅), CHEN Qiang(陈强). Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells[J]. Plasma Science and Technology, 2014, 16(1): 45-49. DOI: 10.1088/1009-0630/16/1/10
    [9]HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08
    [10]WANG Rong(王荣), FENG Zhao(冯钊), LIU Yunhong(刘运宏), LU Ming(鲁明). Effects of 50 keV and 100 keV Proton Irradiation on GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Plasma Science and Technology, 2012, 14(7): 647-649. DOI: 10.1088/1009-0630/14/7/18

Catalog

    Article views (206) PDF downloads (585) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return