Advanced Search+
Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
Citation: Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b

Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe

Funds: This study was partly supported by National Natural Science Foundation of China (Nos. 11475131, 11805011).
More Information
  • Received Date: November 18, 2018
  • We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope (OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines (750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode (E-mode). As the discharge mode changes into the inductively coupled mode (H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode (W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon (H) and Trivelpiece-Gould (TG) waves.
  • [1]
    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [2]
    Shinohara S et al 2009 Phys. Plasmas 16 057104
    [3]
    Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004
    [4]
    Takahashi K, Komuro A and Ando A 2015 Plasma Sources Sci. Technol. 24 055004
    [5]
    Xia G Q et al 2015 Spacecraft Environ. Eng. 32 1 (in Chinese)
    [6]
    Wang S J et al 2007 J. Korean Phys. Soc. 51 989
    [7]
    Wang Y et al 2015 Phys. Plasmas 22 093507
    [8]
    Barada K K et al 2013 Phys. Plasmas 20 012123
    [9]
    Sato G, Oohara W and Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734
    [10]
    Chen F F 2003 Phys. Plasmas 10 2586
    [11]
    Siddiqui MU and Hershkowitz N 2014 Phys. Plasmas 21 020707
    [12]
    Zhao G et al 2018 Plasma Sci. Technol. 20 075402
    [13]
    Braginskii O V, Vasil’eva A N and Kovalev A S 2001 Plasma Phys. Rep. 27 699
    [14]
    Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [15]
    Zhu X M et al 2006 Phys. Plasmas 13 123501
    [16]
    Zhao G et al 2017 Phys. Plasmas 24 123507
    [17]
    Shinohara S et al 2019 Plasma Phys. Controlied Fusion 61 014017
    [18]
    Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
    [19]
    Liu L et al 2009 Plasma Sci. Technol. 11 307
    [20]
    Czerwiec T and Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827
    [21]
    Clarenbach B et al 2007 J. Phys. D: Appl. Phys. 40 5117
    [22]
    Degeling A W et al 1996 Phys. Plasmas 3 2788
    [23]
    Ellingboe A R et al 1996 Phys. Plasmas 3 2797
    [24]
    Isayama S et al 2016 Phys. Plasmas 23 063513
    [25]
    Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
    [26]
    Djermanova N et al 2004 Vacuum 76 389
    [27]
    Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19 105403
    [28]
    Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
    [29]
    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
    [30]
    Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14 113503
    [31]
    Wang Y 2017 Plasma Sci. Technol. 19 024003
    [32]
    Celik M 2011 Spectrochim. Acta Part B At. Spectrosc. 66 149
    [33]
    Chen F F 1992 J. Vac. Sci. Technol. A 10 1389
    [34]
    Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
    [35]
    Arnush D 2000 Phys. Plasmas 7 3042
    [36]
    Ganguli A, Sahu B B and Tarey R D 2011 Plasma Sources Sci. Technol. 20 015021
  • Related Articles

    [1]Hongyu SUN, Jinxiu MA, Yaodong ZHAO, Wan TAO, Qi LIU. The co-excitation of electrostatic ion-cyclotron wave and ion-Bernstein-like wave launched from a grid[J]. Plasma Science and Technology, 2025, 27(3): 035001. DOI: 10.1088/2058-6272/ada910
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [4]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [5]Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
    [6]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [7]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [8]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [9]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.
    [10]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528.

Catalog

    Article views (206) PDF downloads (585) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return