Advanced Search+
Fan ZHOU (周凡), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), Shaocheng LIU (刘少承), Guoqiang LI (李国强), Xiang GAO (高翔), the EAST team. Observation of filament-like structures in ELMy H-mode plasma with a VUV imaging system developed on the EAST tokamak[J]. Plasma Science and Technology, 2019, 21(9): 95101-095101. DOI: 10.1088/2058-6272/ab1b1b
Citation: Fan ZHOU (周凡), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), Shaocheng LIU (刘少承), Guoqiang LI (李国强), Xiang GAO (高翔), the EAST team. Observation of filament-like structures in ELMy H-mode plasma with a VUV imaging system developed on the EAST tokamak[J]. Plasma Science and Technology, 2019, 21(9): 95101-095101. DOI: 10.1088/2058-6272/ab1b1b

Observation of filament-like structures in ELMy H-mode plasma with a VUV imaging system developed on the EAST tokamak

Funds: This work is supported by the National Natural Science Foundation of China (Nos. 11605244, 11875294, 11505221), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB106000 and 2014GB106001).
More Information
  • Received Date: October 22, 2018
  • Revised Date: April 15, 2019
  • Accepted Date: April 18, 2019
  • On the EAST tokamak, filament-like structures have been observed in ELMy H-mode discharges with a high-speed vacuum ultraviolet (VUV) imaging system. The topos, chronos and their weight can be obtained simultaneously by performing the so-called singular value decomposition (SVD) analysis of raw VUV imaging data. The fluctuation amplitude is observed to be suppressed and enhanced gradually in the edge localized mode (ELM) crash and pedestal recovery phase in the chronos, respectively, while filament-like structures can only be found in the pedestal recovery phase on the topos. The mode structure, i.e. m/n=36/9 (m and n are the poloidal and toroidal mode number, respectively) with ρ0=0.95, w0=0.07 (ρ0and w0 denote the mode location and mode width, respectively) is derived by a comparison of the synthetic images and the experimental imaging data.
  • [1]
    Zohm H 1996 Plasma Phys. Control. Fusion 38 105
    [2]
    Connor J W 1998 Plasma Phys. Control. Fusion 40 531
    [3]
    Leonard A W 2014 Phys. Plasmas 21 090501
    [4]
    Loarte A 2003 Plasma Phys. Control. Fusion 45 1549
    [5]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [6]
    Liang Y F et al 2011 Fus. Sci. Technol. 59 586
    [7]
    Kirk A et al 2006 Plasma Phys. Control. Fusion 48 B433
    [8]
    Koch B et al 2007 J. Nucl. Mater. 363–365 1056
    [9]
    Fenstermacher M E et al 2005 Nucl. Fusion 45 1493
    [10]
    Liu Z X et al 2014 Phys. Plasmas 21 090705
    [11]
    Yun G S et al 2011 Phys. Rev. Lett. 107 045004
    [12]
    Zhou F et al 2017 Rev. Sci. Instrum. 88 073505
    [13]
    Wang Z J et al 2018 Plasma Sci. Technol. 20 025103
    [14]
    Liu F K et al 2015 Nucl. Fusion 55 123022
    [15]
    Hu C D 2015 Plasma Sci. Technol. 17 1
    [16]
    Liu H Q et al 2014 Rev. Sci. Instrum. 85 11D405
    [17]
    Ohdachi S et al 2006 Plasma Sci. Technol. 8 45
    [18]
    Ming T F et al 2012 Rev. Sci. Instrum. 83 10E513
    [19]
    Filippas A V et al 1995 Phys. Plasmas 2 839
    [20]
    Snyder P B et al 2005 Phys. Plasmas 12 056115
    [21]
    Kirk A et al 2004 Phys. Rev. Lett. 92 245002
    [22]
    Oyama N et al 2003 Nucl. Fusion 43 1250
    [23]
    Kirk A et al 2004 Plasma Phys. Control. Fusion 46 551
  • Cited by

    Periodical cited type(10)

    1. Zhang, D., Chen, Z., Nie, J. et al. A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2402-2408. DOI:10.1039/d4ja00203b
    2. Zhao, S., Zhao, Y., Dai, Y. et al. Methods for optimization of the original signal in laser induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106982
    3. Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216
    4. Fu, H., Wang, H., Zhang, M. et al. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma. Plasma Science and Technology, 2022, 24(8): 084005. DOI:10.1088/2058-6272/ac6b8e
    5. Guo, L.-B., Zhang, D., Sun, L.-X. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z
    6. Liu, J.-M., Wu, D., Li, C. et al. Quantitative analysis of the nickel base alloy by laser-induced breakdown spectroscopy in high vacuum environment | [高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 79-85. DOI:10.13228/j.boyuan.issn1000-7571.011204
    7. Maurya, G.S., Marín-Roldán, A., Veis, P. et al. A review of the LIBS analysis for the plasma-facing components diagnostics. Journal of Nuclear Materials, 2020. DOI:10.1016/j.jnucmat.2020.152417
    8. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    9. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    10. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (292) PDF downloads (217) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return